Host-associated reservoirs account for the majority of recurrent and oftentimes recalcitrant infections. Previous studies established that uropathogenic E. colithe primary cause of urinary tract infections (UTIs)can adhere to vaginal epithelial cells preceding UTI. Here, we demonstrate that diverse urinary E. coli isolates not only adhere to, but also invade vaginal cells. Intracellular colonization of the vaginal epithelium is detected in acute and chronic murine UTI models indicating the ability of E. coli to reside in the vagina following UTI. Conversely, in a vaginal colonization model, E. coli are detected inside vaginal cells and the urinary tract, indicating that vaginal colonization can seed the bladder. More critically, bacteria are identified inside vaginal cells from clinical samples from women with a history of recurrent UTI. These findings suggest that E. coli can establish a vaginal intracellular reservoir, where it may reside safely from extracellular stressors prior to causing an ascending infection.
For viruses with segmented genomes, genetic diversity is generated by genetic drift, reassortment, and recombination. Recombination produces RNA populations distinct from full-length gene segments and can influence viral population dynamics, persistence, and host immune responses. Viruses in the Reoviridae family, including rotavirus and mammalian orthoreovirus (reovirus), have been reported to package segments containing rearrangements or internal deletions. Rotaviruses with RNA segments containing rearrangements have been isolated from immunocompromised and immunocompetent children and in vitro following serial passage at relatively high multiplicity. Reoviruses that package small, defective RNA segments have established chronic infections in cells and in mice. However, the mechanism and extent of Reoviridae RNA recombination are undefined. Towards filling this gap in knowledge, we determined the titers and RNA segment profiles for reovirus and rotavirus following serial passage in cultured cells. The viruses exhibited occasional titer reductions characteristic of interference. Reovirus strains frequently accumulated segments that retained 5′ and 3′ terminal sequences and featured large internal deletions, while similarly fragmented segments were rarely detected in rotavirus populations. Using next-generation RNA-sequencing to analyze RNA molecules packaged in purified reovirus particles, we identified distinct recombination sites within individual viral genome segments. Recombination junctions were frequently but not always characterized by short direct sequence repeats upstream and downstream that spanned junction sites. Taken together, these findings suggest that reovirus accumulates defective gene segments featuring internal deletions during passage and undergoes sequence-directed recombination at distinct sites. IMPORTANCE Viruses in the Reoviridae family include important pathogens of humans and other animals and have segmented RNA genomes. Recombination in RNA virus populations can facilitate novel host exploration and increased disease severity. The extent, patterns, and mechanisms of Reoviridae recombination and the functions and effects of recombined RNA products are poorly understood. Here, we provide evidence that mammalian orthoreovirus regularly synthesizes RNA recombination products that retain terminal sequences but contain internal deletions, while rotavirus rarely synthesizes such products. Recombination occurs more frequently at specific sites in the mammalian orthoreovirus genome, and short regions of identical sequence are often detected at junction sites. These findings suggest that mammalian orthoreovirus recombination events are directed in part by RNA sequences. An improved understanding of recombined viral RNA synthesis may enhance our capacity to engineer improved vaccines and virotherapies in the future.
For viruses with segmented genomes, genetic diversity is generated by genetic drift, reassortment, and recombination. Recombination produces RNA populations distinct from full-length gene segments and can influence viral population dynamics, persistence, and host immune responses. Viruses in the Reoviridae family, including rotavirus and mammalian orthoreovirus (reovirus), have been reported to package segments containing rearrangements or internal deletions. Rotaviruses with RNA segments containing rearrangements have been isolated from immunocompromised and immunocompetent children and in vitro following serial passage at high multiplicity. Reoviruses that package small, defective RNA segments have established chronic infections in cells and in mice. However, the mechanism and extent of Reoviridae RNA recombination are undefined. Towards filling this gap in knowledge, we determined the titers and RNA segment profiles for reovirus and rotavirus following serial passage in cultured cells. The viruses exhibited occasional titer reductions characteristic of interference. Reovirus strains frequently accumulated segments that retained 5′ and 3′ terminal sequences and featured large internal deletions, while similar segments were rarely detected in rotavirus populations. Using next-generation RNA-sequencing to analyze RNA molecules packaged in purified reovirus particles, we identified distinct recombination sites within individual viral gene segments. Recombination junction sites were frequently associated with short regions of identical sequence. Taken together, these findings suggest that reovirus accumulates defective gene segments featuring internal deletions during passage and undergoes sequence-directed recombination at distinct sites.
The observation that l- serine uptake occurs as E. coli cultures grow is well established, yet the benefit E. coli garners from this uptake remains unclear. Here, we report a novel acid tolerance mechanism where l- serine is deaminated to pyruvate and ammonia, promoting survival of E. coli under acidic conditions. This study is important as it provides evidence of the use of l- serine as an acid response strategy, not previously reported for E. coli .
Escherichia coli associates with humans early in life and can occupy several body niches either as a commensal in the gut and vagina, or as a pathogen in the urinary tract. As such, E. coli has an arsenal of acid response mechanisms that allow it to withstand the different levels of acid stress encountered within and outside the host. Here, we report the discovery of an additional acid response mechanism that involves the deamination of L-serine to pyruvate by the conserved L-serine deaminases SdaA and SdaB. L-serine is the first amino acid to be imported in E. coli during growth in laboratory media, as the culture senesces. However, there remains a lack in knowledge as to why L-serine is preferred and how it is utilized. We show that in acidified media, L-serine is brought into the cell via the SdaC transporter and deletion of both SdaA and SdaB renders E. coli susceptible to acid stress, with a phenotype similar to other acid stress deletion mutants. We also show that the pyruvate produced by L-serine de-amination activates the pyruvate sensor BtsS, which in concert with the non-cognate response regulator YpdB upregulates the putative transporter YhjX, similar to what has been reported for this system during transition of E. coli to stationary phase. Based on these observations, we propose that L-serine deamination constitutes another acid response mechanism in E. colithat may function to protect E. coli as it transitions to stationary phase of growth.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.