En este artículo se presenta un sistema de detección de peatones en la noche, para aplicaciones en seguridad vehicular. Para este desarrollo se ha analizado el desempeño del algoritmo Faster R-CNN con imágenes en el infrarrojo lejano. Por lo que se constató que presenta inconvenientes a la hora de detectar peatones a larga distancia. En consecuencia, se presenta una nueva arquitectura Faster R-CNN dedicada a la detección en múltiples escalas, mediante dos generadores de regiones de interés (ROI) dedicados a peatones a corta y larga distancia, denominados RPNCD y RPNLD, respectivamente. Esta arquitectura ha sido comparada con los modelos para Faster R-CNN que han presentado los mejores resultados, como son VGG-16 y Resnet 101. Los resultados experimentales se han desarrollado sobre las bases de datos CVC-09 y LSIFIR, los cuales demostraron mejoras, especialmente en la detección de peatones a larga distancia, presentando una tasa de error versus FPPI de 16 % y sobre la curva Precisión vs. Recall un AP de 89,85 % para la clase peatón y un mAP de 90 % sobre el conjunto de pruebas de las bases de datos LSIFIR y CVC-09.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.