The present study explores the possible involvement of a purinergic mechanism in mechanosensory transduction in the bladder using P2X(3) receptor knock-out (P2X(3)-/-) and wild-type control (P2X(3)+/+) mice. Immunohistochemistry revealed abundant nerve fibers in a suburothelial plexus in the mouse bladder that are immunoreactive to anti-P2X(3). P2X(3)-positive staining was completely absent in the subepithelial plexus of the P2X(3)-/- mice, whereas staining for calcitonin gene-related peptide and vanilloid receptor 1 receptors remained. Using a novel superfused mouse bladder-pelvic nerve preparation, we detected a release of ATP proportional to the extent of bladder distension in both P2X(3)+/+ and P2X(3)-/- mice, although P2X(3)-/- bladder had an increased capacity compared with that of the P2X(3)+/+ bladder. The activity of multifiber pelvic nerve afferents increased progressively during gradual bladder distension (at a rate of 0.1 ml/min). However, the bladder afferents from P2X(3)-/- mice showed an attenuated response to bladder distension. Mouse bladder afferents of P2X(3)+/+, but not P2X(3)-/-, were rapidly activated by intravesical injections of P2X agonists (ATP or alpha,beta-methylene ATP) and subsequently showed an augmented response to bladder distension. By contrast, P2X antagonists [2',3'-O-(2,4,6-trinitrophenyl)-ATP and pyridoxal 5-phosphate 6-azophenyl-2',4'-disulfonic acid] and capsaicin attenuated distension-induced discharges in bladder afferents. These data strongly suggest a major sensory role for urothelially released ATP acting via P2X(3) receptors on a subpopulation of pelvic afferent fibers.
P2 receptors have been identified in rat kidney by autoradiography, using the radioligand [3H]α,β-methylene ATP, and by immunohistochemistry, using a polyclonal antibody to the P2X1 purinoceptor. They have been localized to the vascular smooth muscle of intrarenal arteries, including arcuate and interlobular arteries, and afferent arterioles, but not glomeruli, postglomerular efferent arterioles, or renal tubules. We conclude that at least some of the P2 receptors present on vascular smooth muscle are of the P2X1 subtype. The functional significance of these findings in the vascular control of the kidney is discussed.
Having established the distribution of P2X receptors in normal animal bladder and ureter tissue, it is now possible to perform comparable investigations on normal and diseased human tissue to establish a possible role of P2X receptors in pathogenic events.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.