KSHV infection drives poorly cytotoxic CD56negative natural killer cell differentiation in vivo upon KSHV/EBV dual infection Graphical abstract Highlights d CD56 -CD16 + NK cells accumulate upon KSHV/EBV dual infection in humanized mice d KSHV titers correlate with CD56 -CD16 + NK cell frequency in vivo d CD56 -CD16 + NK cells display impaired effector functions
Increasing antibiotic resistances and a lack of new antibiotics render the treatment of Gram-negative bacterial infections increasingly difficult. Therefore, additional approaches are being investigated. Macrolides are not routinely used against Gram-negative bacteria due to lack of evidence of in vitro effectiveness. However, it has been shown that Pseudomonas spp. are susceptible to macrolides in liquid RPMI-1640 and clinical data suggest improvement in patients’ outcomes. So far, these findings have been hardly applicable to the clinical setting due to lack of routine low-complexity antimicrobial susceptibility testing (AST) for macrolides. We therefore optimized and compared broth microdilution and disk diffusion AST. Multidrug-resistant Gram-negative bacteria (Escherichia coli, Enterobacter cloacae, Klebsiella pneumoniae, Pseudomonas aeruginosa) were tested for azithromycin susceptibility by disk diffusion and broth microdilution in Mueller–Hinton and RPMI-1640 media. Azithromycin susceptibility of Enterobacteriaceae and a subgroup of P. aeruginosa increased significantly on RPMI-1640 agar compared to Mueller–Hinton agar. Further, a significant correlation (Kendall, τ, p) of zone diameters and minimal inhibitory concentrations (MICs) was found on RPMI-1640 agar for E. coli (−0.4279, 0.0051), E. cloacae (−0.3783, 0.0237) and P. aeruginosa (−0.6477, <0.0001). Performing routine disk diffusion AST on RPMI-1640 agar may lead to the identification of additional therapeutic possibilities for multidrug-resistant bacterial infections in the routine clinical diagnostic setting.
The two human tumor viruses, Epstein–Barr virus (EBV) and Kaposi sarcoma-associated herpesvirus (KSHV), have been mostly studied in isolation. Recent studies suggest that co-infection with both viruses as observed in one of their associated malignancies, namely primary effusion lymphoma (PEL), might also be required for KSHV persistence. In this review, we discuss how EBV and KSHV might support each other for persistence and lymphomagenesis. Moreover, we summarize what is known about their innate and adaptive immune control which both seem to be required to ensure asymptomatic persistent co-infection with these two human tumor viruses. A better understanding of this immune control might allow us to prepare for vaccination against EBV and KSHV in the future.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.