We have previously characterized a human blood CD19+CD1c+IgM+CD27+CD21loCD10+ innate-like B-cell population, which presents features shared by both transitional immature and marginal zone (MZ) B-cells, named herein “precursor-like” MZ B-cells. B-cells with similar attributes have been associated with regulatory potential (Breg). In order to clarify this issue and better characterize this population, we have proceeded to RNA-Seq transcriptome profiling of mature MZ and precursor-like MZ B-cells taken from the blood of healthy donors. We report that ex vivo mature MZ and precursor-like MZ B-cells express transcripts for the immunoregulatory marker CD83 and nuclear receptors NR4A1, 2, and 3, known to be associated with T-cell regulatory (Treg) maintenance and function. Breg associated markers such as CD39 and CD73 were also expressed by both populations. We also show that human blood and tonsillar precursor-like MZ B-cells were the main B-cell population to express elevated levels of CD83 and NR4A1-3 proteins ex vivo and without stimulation. Sorted tonsillar precursor-like MZ B-cells exerted regulatory activity on autologous activated CD4+ T-cells, and this was affected by a CD83 blocking reagent. We believe these observations shed light on the Breg potential of MZ populations, and identify NR4A1-3 as potential Breg markers, which as for Tregs, may be involved in stabilization of a regulatory status. Since expression and activity of these molecules can be modulated therapeutically, our findings may be useful in strategies aiming at modulation of Breg responses.
We have reported excess B-cell activating factor (BAFF) in the blood of HIV-infected progressors, which was concomitant with increased frequencies of precursor-like marginal zone (MZp) B-cells, early on and despite antiretroviral therapy (ART). In controls, MZp possess a strong B-cell regulatory (Breg) potential. They highly express IL-10, the orphan nuclear receptors (NR)4A1, NR4A2 and NR4A3, as well as the ectonucleotidases CD39 and CD73, all of which are associated with the regulation of inflammation. Furthermore, we have shown MZp regulatory function to involve CD83 signaling. To address the impact of HIV infection and excessive BAFF on MZp Breg capacities, we have performed transcriptomic analyses by RNA-seq of sorted MZp B-cells from the blood of HIV-infected progressors. The Breg profile and function of blood MZp B-cells from HIV-infected progressors were assessed by flow-cytometry and light microscopy high-content screening (HCS) analyses, respectively. We report significant downregulation of NR4A1, NR4A2, NR4A3 and CD83 gene transcripts in blood MZp B-cells from HIV-infected progressors when compared to controls. NR4A1, NR4A3 and CD83 protein expression levels and Breg function were also downregulated in blood MZp B-cells from HIV-infected progressors and not restored by ART. Moreover, we observe decreased expression levels of NR4A1, NR4A3, CD83 and IL-10 by blood and tonsillar MZp B-cells from controls following culture with excess BAFF, which significantly diminished their regulatory function. These findings, made on a limited number of individuals, suggest that excess BAFF contributes to the alteration of the Breg potential of MZp B-cells during HIV infection and possibly in other situations where BAFF is found in excess.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.