1. Twenty-five pairs of North American beavers Castor canadensis Kuhl were introduced to Tierra del Fuego Island in 1946. The population has expanded across the archipelago, arriving at the Chilean mainland by the mid-1990s. Densities range principally between 0.5-2.05 colonies/km. They have an impact on between 30-50% of stream length and occupy 2-15% of landscape area with impoundments and meadows. Beaver impacts constitute the largest landscape-level alteration in subantarctic forests since the last ice age. 2. The colonization pattern, colony densities and impacted area indicate that habitat in the austral archipelago is optimal for beaver invasion, due to low predator pressure and suitable food resources. Nothofagus pumilio forests are particularly appropriate habitat, but a more recent invasion is occurring in adjacent steppe ecosystems. Nonetheless, Nothofagus reproductive strategies are not well adapted to sustain high beaver population levels. 3. Our assessment shows that at the patch-scale in stream and riparian ecosystems, the direction and magnitude of exotic beaver impacts are predictable from expectations derived from North American studies, relating ecosystem engineering with underlying ecological mechanisms such as the relationships of habitat heterogeneity and productivity on species richness and ecosystem function. 4. Based on data from the species' native and exotic range, our ability to predict the effects of beavers is based on: (i) understanding the ecological relationships of its engineering effects on habitat, trophic dynamics and disturbance regimes, and (ii) having an adequate comprehension of the landscape context and natural history of the ecosystem being engineered. 5. We conclude that beaver eradication strategies and subsequent ecosystem restoration efforts, currently being considered in southern Chile and Argentina, should focus on the ecology of native ecosystems rather than the biology of this invasive species per se. Furthermore, given the nature of the subantarctic landscape, streams will probably respond to restoration efforts more quickly than riparian ecosystems.
Invasive species threaten global biodiversity, but multiple invasions make predicting the impacts difficult because of potential synergistic effects. We examined the impact of introduced beaver Castor canadensis, brook trout Salvelinus fontinalis, and rainbow trout Oncorhynchus mykiss on native stream fishes in the Cape Horn Biosphere Reserve, Chile. The combined effects of introduced species on the structure of the native freshwater fish community were quantified by electrofishing 28 stream reaches within four riparian habitat types (forest, grassland, shrubland, and beaver-affected habitat) in 23 watersheds and by measuring related habitat variables (water velocity, substrate type, depth, and the percentage of pools). Three native stream fish species (puye Galaxias maculatus [also known as inanga], Aplochiton taeniatus, and A. zebra) were found along with brook trout and rainbow trout, but puye was the only native species that was common and widespread. The reaches affected by beaver impoundments had significantly higher puye densities than all other reaches in this study. These results are comparable to those reported for other streams in southern Chile. The presence of trout reduced the abundance of puye, but only in beaver-affected areas; all three natural riparian habitat types had uniformly low puye abundance and were unaffected by the presence or absence of trout. The data suggest that one invasive species, the beaver, enhanced puye habitat and thereby increased the abundance of that species, which, in turn, helped moderate the negative impacts of invasive trout.
Major threats to aquatic systems such as shallow lakes can include declining water quality, the loss of macrophyte beds, and the occurrence of harmful algal blooms. Often, these changes go unnoticed until a shift from a clear, oligotrophic system dominated by macrophyte beds to a turbid, eutrophic system dominated by phytoplankton and associated harmful algal blooms has occurred. Lake Mattamuskeet, which mostly lies within the boundary of Mattamuskeet National Wildlife Refuge, North Carolina, is a shallow lake that has recently experienced a reduction in water clarity and macrophyte beds, also referred to as submerged aquatic vegetation (SAV), and an increase in nutrients, phytoplankton, harmful algal blooms, and cyanotoxin production. At Lake Mattamuskeet, SAV coverage and water clarity declined between the 1980s and 2015. During the same time, significantly increasing trends in nitrogen, phosphorus, turbidity, suspended sediments, chlorophyll a, and pH occurred. Current water-quality conditions (2012)(2013)(2014)(2015) are not conducive to SAV survival and, in some cases, do not meet North Carolina water-quality standards for the protection of aquatic life. Water clarity declines appear to predate the SAV die-offs on the east side. Moving forward, SAV will serve as a primary indicator for lake health; and lake monitoring, research, and management efforts will focus on the restoration of aquatic grasses and water quality at Lake Mattamuskeet.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.