Systematic review of published population based surveys to examine the relationship between primary open angle glaucoma (POAG) prevalence and demographic factors. A literature search identified population-based studies with quantitative estimates of POAG prevalence (to October 2014). Multilevel binomial logistic regression of log-odds of POAG was used to examine the effect of age and gender among populations of different geographical and ethnic origins, adjusting for study design factors. Eighty-one studies were included (37 countries, 216 214 participants, 5266 POAG cases). Black populations showed highest POAG prevalence, with 5.2% (95% credible interval (CrI) 3.7%, 7.2%) at 60 years, rising to 12.2% (95% CrI 8.9% to 16.6%) at 80 years. Increase in POAG prevalence per decade of age was greatest among Hispanics (2.31, 95% CrI 2.12, 2.52) and White populations (1.99, 95% CrI 1.86, 2.12), and lowest in East and South Asians (1.48, 95% CrI 1.39, 1.57; 1.56, 95% CrI 1.31, 1.88, respectively). Men were more likely to have POAG than women (1.30, 95% CrI 1.22, 1.41). Older studies had lower POAG prevalence, which was related to the inclusion of intraocular pressure in the glaucoma definition. Studies with visual field data on all participants had a higher POAG prevalence than those with visual field data on a subset. Globally 57.5 million people (95% CI 46.4 to 73.1 million) were affected by POAG in 2015, rising to 65.5 million (95% CrI 52.8, 83.2 million) by 2020. This systematic review provides the most precise estimates of POAG prevalence and shows omitting routine visual field assessment in population surveys may have affected case ascertainment. Our findings will be useful to future studies and healthcare planning.
PurposeAge-related macular degeneration (AMD) is a frequent, complex disorder in elderly of European ancestry. Risk profiles and treatment options have changed considerably over the years, which may have affected disease prevalence and outcome. We determined the prevalence of early and late AMD in Europe from 1990 to 2013 using the European Eye Epidemiology (E3) consortium, and made projections for the future.DesignMeta-analysis of prevalence data.ParticipantsA total of 42 080 individuals 40 years of age and older participating in 14 population-based cohorts from 10 countries in Europe.MethodsAMD was diagnosed based on fundus photographs using the Rotterdam Classification. Prevalence of early and late AMD was calculated using random-effects meta-analysis stratified for age, birth cohort, gender, geographic region, and time period of the study. Best-corrected visual acuity (BCVA) was compared between late AMD subtypes; geographic atrophy (GA) and choroidal neovascularization (CNV).Main Outcome MeasuresPrevalence of early and late AMD, BCVA, and number of AMD cases.ResultsPrevalence of early AMD increased from 3.5% (95% confidence interval [CI] 2.1%–5.0%) in those aged 55–59 years to 17.6% (95% CI 13.6%–21.5%) in those aged ≥85 years; for late AMD these figures were 0.1% (95% CI 0.04%–0.3%) and 9.8% (95% CI 6.3%–13.3%), respectively. We observed a decreasing prevalence of late AMD after 2006, which became most prominent after age 70. Prevalences were similar for gender across all age groups except for late AMD in the oldest age category, and a trend was found showing a higher prevalence of CNV in Northern Europe. After 2006, fewer eyes and fewer ≥80-year-old subjects with CNV were visually impaired (P = 0.016). Projections of AMD showed an almost doubling of affected persons despite a decreasing prevalence. By 2040, the number of individuals in Europe with early AMD will range between 14.9 and 21.5 million, and for late AMD between 3.9 and 4.8 million.ConclusionWe observed a decreasing prevalence of AMD and an improvement in visual acuity in CNV occuring over the past 2 decades in Europe. Healthier lifestyles and implementation of anti–vascular endothelial growth factor treatment are the most likely explanations. Nevertheless, the numbers of affected subjects will increase considerably in the next 2 decades. AMD continues to remain a significant public health problem among Europeans.
Genetic and epidemiologic studies have shown that lipid genes and High Density Lipoproteins (HDL) are implicated in age-related macular degeneration (AMD). We studied circulating lipid levels in relation to AMD in a large European dataset, and investigated whether this relationship is driven by certain sub fractions. Design: (Pooled) analysis of cross-sectional data. Participants: 30,953 individuals aged 50+ participating in the E3 consortium; and 1530 individuals from the Rotterdam Study with lipid sub fraction data. Methods: In E3, AMD features were graded per eye on fundus photographs using the Rotterdam Classification. Routine blood lipid measurements were available from each participant. Data on genetics, medication and confounders such as body mass index, were obtained from a common database. In a subgroup of the Rotterdam Study, lipid sub fractions were identified by the Nightingale biomarker platform. Random-intercepts mixed-effects models incorporating confounders and study site as a random-effect were used to estimate the associations. Main Outcome Measures: early, late or any AMD, phenotypic features of early AMD, lipid measurements. Results: HDL was associated with an increased risk of AMD, corrected for potential confounders (Odds Ratio (OR) 1.21 per 1mmol/L increase (95% confidence interval[CI] 1.14-1.29); while triglycerides were associated with a decreased risk (OR 0.94 per 1mmol/L increase [95%CI 0.91-0.97]). Both were associated with drusen size, higher HDL raises the odds of larger drusen while higher triglycerides decreases the odds. LDL-cholesterol only reached statistical significance in the association with early AMD (p=0.045). Regarding lipid sub fractions: the concentration of extra-large HDL particles showed the most prominent association with AMD (OR 1.24 [95%CI 1.10-1.40]). The CETP risk variant (rs17231506) for AMD was in line with increased-HDL levels (p=7.7x10-7); but LIPC risk variants (rs2043085, rs2070895) were associated in an opposite way (p=1.0x10-6 and 1.6x10-4). Conclusions: Our study suggests that HDL-cholesterol is associated with increased risk of AMD and triglycerides negatively associated. Both show the strongest association with early AMD and drusen. Extra-large HDL sub fractions seem to be drivers in the relation with AMD, variants in lipid genes play a more ambiguous role in this association. Whether systemic lipids directly influence AMD or represent lipid metabolism in the retina remains a question to be answered.
PurposeTo describe the associations of physical and demographic factors with Goldmann-correlated intraocular pressure (IOPg) and corneal-compensated intraocular pressure (IOPcc) in a British cohort.DesignCross-sectional study within the UK Biobank, a large-scale multisite cohort study in the United Kingdom.ParticipantsWe included 110 573 participants from the UK Biobank with intraocular pressure (IOP) measurements available. Their mean age was 57 years (range, 40–69 years); 54% were women, and 90% were white.MethodsParticipants had 1 IOP measurement made on each eye using the Ocular Response Analyzer noncontact tonometer. Linear regression models were used to assess the associations of IOP with physical and demographic factors.Main Outcome MeasuresThe IOPg and IOPcc.ResultsThe mean IOPg was 15.72 mmHg (95% confidence interval [CI], 15.70–15.74 mmHg), and the mean IOPcc was 15.95 mmHg (15.92–15.97 mmHg). After adjusting for covariates, IOPg and IOPcc were both significantly associated with older age, male sex, higher systolic blood pressure (SBP), faster heart rate, greater myopia, self-reported glaucoma, and colder season (all P < 0.001). The strongest determinants of both IOPg and IOPcc were SBP (partial R2: IOPg 2.30%, IOPcc 2.26%), followed by refractive error (IOPg 0.60%, IOPcc 1.04%). The following variables had different directions of association with IOPg and IOPcc: height (−0.77 mmHg/m IOPg; 1.03 mmHg/m IOPcc), smoking (0.19 mmHg IOPg, −0.35 mmHg IOPcc), self-reported diabetes (0.41 mmHg IOPg, −0.05 mmHg IOPcc), and black ethnicity (−0.80 mmHg IOPg, 0.77 mmHg IOPcc). This suggests that height, smoking, diabetes, and ethnicity are related to corneal biomechanical properties. The increase in both IOPg and IOPcc with age was greatest among those of mixed ethnicities, followed by blacks and whites. The same set of covariates explained 7.4% of the variability of IOPcc but only 5.3% of the variability of IOPg.ConclusionsThis analysis of associations with IOP in a large cohort demonstrated that some variables clearly have different associations with IOPg and IOPcc, and that these 2 measurements may reflect different biological characteristics.
Objectives To report the distribution of intraocular pressure (IOP) by age and sex and the prevalence of glaucoma. Design Community based cross sectional observational study. Setting EPIC-Norfolk cohort in Norwich and the surrounding rural and urban areas. Participants 8623 participants aged 48-92 recruited from the community who underwent ocular examination to identify glaucoma. Main outcome measures Prevalence and characteristics of glaucoma, distribution of IOP, and the sensitivity and specificity of IOP for case finding for glaucoma. Results The mean IOP in 8401 participants was 16.3 mm Hg (95% confidence interval 16.2 mm Hg to 16.3 mm Hg; SD 3.6 mm Hg). In 363 participants (4%), glaucoma was present in either eye; 314 (87%) had primary open angle glaucoma. In the remaining participants, glaucoma was suspected in 607 (7%), and 863 (10.0%) had ocular hypertension. Two thirds (242) of those with glaucoma had previously already received the diagnosis. In 76% of patients with newly diagnosed primary open angle glaucoma (83/107), the mean IOP was under the threshold for ocular hypertension (21 mm Hg). No one IOP threshold provided adequately high sensitivity and specificity for diagnosis of glaucoma. Conclusions In this British community, cases of glaucoma, suspected glaucoma, and ocular hypertension represent a large number of potential referrals to the hospital eye service. The use of IOP for detection of those with glaucoma is inaccurate and probably not viable.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.