People with HIV (PWH) on antiretroviral therapy (ART) experience elevated rates of neurological impairment, despite controlling for demographic factors and comorbidities, suggesting viral or neuroimmune etiologies for these deficits. Here, we apply multimodal and cross-compartmental single-cell analyses of paired cerebrospinal fluid (CSF) and peripheral blood in PWH and uninfected controls. We demonstrate that a subset of central memory CD4 + T cells in the CSF produced HIV-1 RNA, despite apparent systemic viral suppression, and that HIV-1–infected cells were more frequently found in the CSF than in the blood. Using cellular indexing of transcriptomes and epitopes by sequencing (CITE-seq), we show that the cell surface marker CD204 is a reliable marker for rare microglia-like cells in the CSF, which have been implicated in HIV neuropathogenesis, but which we did not find to contain HIV transcripts. Through a feature selection method for supervised deep learning of single-cell transcriptomes, we find that abnormal CD8 + T cell activation, rather than CD4 + T cell abnormalities, predominated in the CSF of PWH compared with controls. Overall, these findings suggest ongoing CNS viral persistence and compartmentalized CNS neuroimmune effects of HIV infection during ART and demonstrate the power of single-cell studies of CSF to better understand the CNS reservoir during HIV infection.
Background Synaptic injury is a pathological hallmark of neurological impairment in people living with HIV (PLWH), a common complication despite viral suppression with antiretroviral therapy (ART). Measurement of synaptic density in living humans may allow better understanding of HIV neuropathogenesis and provide a dynamic biomarker for therapeutic studies. We applied novel synaptic vesical protein 2A (SV2A) positron emission tomographic (PET) imaging to investigate synaptic density in the frontostriatalthalamic region in PLWH and HIV-uninfected (HIV-) participants. Methods In this cross-sectional pilot study,13 older male PLWH on ART underwent MRI and PET scanning with the SV2A ligand [ 11C]UCB-J with partial volume correction, and had neurocognitive assessments. SV2A binding potential (BPND) in the frontostriatalthalamic circuit was compared to 13 age-matched HIV- participants, and assessed with respect to neurocognitive performance in PLWH. Results PLWH had 14% lower frontostriatalthalamic SV2A synaptic density compared to HIV- (PLWH: mean [SD], 3.93 [0.80]; HIV-: 4.59 [0.43]; P = .02, effect size 1.02). Differences were observed in widespread additional regions in exploratory analyses. Higher frontostriatalthalamic SV2A BPND associated with better grooved pegboard performance, a measure of motor coordination, in PLWH (r = 0.61, P = .03). Conclusions In a pilot study, SV2A PET imaging reveals reduced synaptic density in older male PLWH on ART compared to HIV- in the frontostriatalthalamic circuit and other cortical areas. Larger studies controlling for factors in addition to age are needed to determine whether differences are attributable to HIV or comorbidities in PLWH. SV2A imaging is a promising biomarker for studies of neuropathogenesis and therapeutic interventions in HIV.
Restrictive cardiomyopathy (RCM), a potentially devastating heart muscle disorder, is characterized by diastolic dysfunction due to abnormal muscle relaxation and myocardial stiffness resulting in restrictive filling of the ventricles. Diastolic dysfunction is often accompanied by left atrial or bi-atrial enlargement and normal ventricular size and systolic function. RCM is the rarest form of cardiomyopathy, accounting for 2-5% of pediatric cardiomyopathy cases, however, survival rates have been reported to be 82%, 80%, and 68% at 1-, 2-, and 5-years after diagnosis, respectively. RCM can be idiopathic, familial, or secondary to a systemic disorder, such as amyloidosis, sarcoidosis, and hereditary hemochromatosis. Approximately 30% of cases are familial RCM, and the genes that have been linked to RCM are cTnT, cTnI, MyBP-C, MYH7, MYL2, MYL3, DES, MYPN, TTN, BAG3, DCBLD2, LNMA, and FLNC. Increased Ca 2+ sensitivity, sarcomere disruption, and protein aggregates are some of the few mechanisms of pathogenesis that have been revealed by studies utilizing cell lines and animal models. Additional exploration into the pathogenesis of RCM is necessary to create novel therapeutic strategies to reverse restrictive cardiomyopathic phenotypes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.