The present study demonstrates that two different forms of the intracellular cholesterol esterification enzyme acyl-CoA:cholesterol acyltransferase (ACAT) are present in the nonhuman primate hepatocyte; one is similar to that originally cloned from human genomic DNA, here termed ACAT1, while a second gene product, termed ACAT2, is reported here. The primate ACAT2 gene product was cloned from an African green monkey liver cDNA library. Sequence analysis of an isolated, full-length clone of ACAT2 cDNA identified an open reading frame encoding a 526-amino acid protein with essentially no sequence similarity to the ACAT1 cDNA over the N-terminal 101 amino acids but with 57% identity predicted over the remaining 425 amino acids. Transfection of the cloned ACAT2 cDNA into two different mammalian cell types resulted in the production of abundant ACAT activity which was sensitive to ACAT inhibitors. Northern blot analysis showed that the ACAT2 mRNA was expressed primarily in liver and intestine in monkeys. In contrast, ACAT1 mRNA was expressed in almost all tissues examined. Topologic predictions from the amino acid sequence of ACAT2 indicates that it has seven trans-membrane domains in a configuration that places the putative active site of the enzyme in the lumen of the endoplasmic reticulum. This orientation of ACAT2 in the endoplasmic reticulum membrane, in addition to its expression only in liver and intestine, suggests that this enzyme may have as a primary function, the secretion of cholesteryl esters into apoB-containing lipoproteins.The intracellular formation of cholesteryl esters catalyzed by the action of the enzyme acyl-CoA:cholesterol acyltransferase (ACAT; EC 2.3.1.26) 1 appears to be nearly ubiqitous in mammalian cells (1). Elucidation of the details of the structure and catalytic mechanism of ACAT and of the regulation of its activity have been stymied by the difficulty in isolating and purifying an active form of this membrane-associated enzyme. It has taken the isolation of a cDNA for ACAT from human genomic DNA, accomplished through functional complementation of mutant Chinese hamster ovary cells lacking ACAT activity, to initiate progress in understanding the biochemistry of ACAT function (2). The mRNA for this ACAT is expressed in most human tissues and cDNAs with nearly identical ACAT sequences have likewise been found in a variety of tissues from mouse, hamster, and rabbit (3-5).Several functions can be attributed to cholesterol esterification by ACAT. The enzyme appears to modulate the potentially toxic effects of cholesterol in cell membranes. By attaching a fatty acid to the free hydroxyl group of cholesterol, physical properties of the cholesterol molecule are changed and the solubility of esterified cholesterol in the lipids of the cell membrane is limited. Cholesteryl esters accumulate in lipid droplets in the cytoplasm, and maintenance of a balance between the free and esterified forms of cholesterol in a cell is believed to be a component of regulation of cholesterol signaling pathways (6...
Abstract-Angiotensin (Ang) peptides play a critical role in regulating vascular reactivity and structure. We showed that Ang-(1-7) reduced smooth muscle growth after vascular injury and attenuated the proliferation of vascular smooth muscle cells (VSMCs). This study investigated the molecular mechanisms of the antiproliferative effects of Ang-(1-7) in cultured rat aortic VSMCs. Ang-(1-7) caused a dose-dependent release of prostacyclin from VSMCs, with a maximal release of 277.9Ϯ25.2% of basal values (PϽ0.05) by 100 nmol/L Ang-(1-7). The cyclooxygenase inhibitor indomethacin significantly attenuated growth inhibition by Ang-(1-7). In contrast, neither a lipoxygenase inhibitor nor a cytochrome p450 epoxygenase inhibitor prevented the antiproliferative effects of Ang-(1-7). These results suggest that Ang-(1-7) inhibits vascular growth by releasing prostacyclin. Ang-(1-7) caused a dose-dependent release of cAMP, which might result from prostacyclin-mediated activation of adenylate cyclase. The cAMP-dependent protein kinase inhibitor Rp-adenosine-3Ј,5Ј-cyclic monophosphorothioate attenuated the Ang-(1-7)-mediated inhibition of serumstimulated thymidine incorporation. Finally, Ang-(1-7) inhibited Ang II stimulation of mitogen-activated protein kinase activities (ERK1/2). Incubation of VSMCs with concentrations of Ang-(1-7) up to 1 mol/L had no effect on ERK1/2 activation. However, preincubation with increasing concentrations of Ang-(1-7) caused a dose-dependent reduction in Ang II-stimulated ERK1/2 activities. Ang-(1-7) (1 mol/L) reduced 100 nmol/L Ang II-stimulated ERK1 and ERK2 activation by 42.3Ϯ6.2% and 41.2Ϯ4.2%, respectively (PϽ0.01). These results suggest that Ang-(1-7) inhibits vascular growth through the release of prostacyclin, through the prostacyclin-mediated production of cAMP and activation of cAMP-dependent protein kinase, and by attenuation of mitogen-activated protein kinase activation.
The identification of the human cannabinoid receptors and their roles in health and disease, has been one of the most significant biochemical and pharmacological advancements to have occurred in the past few decades. In spite of the major strides made in furthering endocannabinoid research, therapeutic exploitation of the endocannabinoid system has often been a challenging task. An impaired endocannabinoid tone often manifests as changes in expression and/or functions of type 1 and/or type 2 cannabinoid receptors. It becomes important to understand how alterations in cannabinoid receptor cellular signaling can lead to disruptions in major physiological and biological functions, as they are often associated with the pathogenesis of several neurological, cardiovascular, metabolic, and inflammatory diseases. This review focusses mostly on the pathophysiological roles of type 1 and type 2 cannabinoid receptors, and it attempts to integrate both cellular and physiological functions of the cannabinoid receptors. Apart from an updated review of pre-clinical and clinical studies, the adequacy/inadequacy of cannabinoid-based therapeutics in various pathological conditions is also highlighted. Finally, alternative strategies to modulate endocannabinoid tone, and future directions are also emphasized.
Angiotensin (Ang) II plays a critical role in cardiovascular and blood pressure regulation. Ang II is produced by angiotensinconverting enzyme (ACE) and it interacts with the Ang AT 1 receptor to cause much of its well-known cardiovascular effects. Ang-(1-7) is another active peptide produced by the rennin-angiotensin system. This peptide is produced from Ang I or Ang II by the catalytic activity of ACE2. Ang-(1-7) interacts with the Mas receptor to counteract many of the effects of Ang II. Thus, the ACE2/Ang-(1-7)/Mas axis acts opposite of the ACE/Ang II/AT 1 axis. In this study we investigated how Ang II regulates the key enzymes of these axes, ACE and its homolog ACE2, and determined whether they are dysregulated in the hypertensive condition. Brainstem and cerebellum astrocytes isolated from the spontaneously hypertensive rat (SHR) were used in these studies. Ang II effect on the enzymes' mRNA and protein levels was measured using quantitative PCR and western blotting techniques, respectively. Results from this study showed that Ang II up-regulated ACE protein levels, but down-regulated ACE mRNA levels in brainstem and cerebellum astrocytes in both models. Ang II also reduced ACE2 mRNA expression in SHR and Wistar astrocytes isolated from both brain regions. Ang II effects on ACE2 protein were biphasic. In SHR astrocytes, Ang IImediated ACE2 protein initially increased then decreased at later time points. In contrast, in Wistar astrocytes, Ang II initially decreased ACE2 protein expression, but up-regulated the protein at later time points. The findings of these studies suggest that Ang II has a differential effect on ACE and ACE2 expression. Furthermore, in the SHR model there may be alteration in the ACE/ACE2 balance in a manner that favors increased Ang II generation and decreased Ang-(1-7) production contributing to the hypertensive phenotype observed in this model.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.