Given the hepatotoxicity and an unfavorable pharmacokinetic profile of zileuton (Zyflo ), currently the only approved and clinically used 5-Lipoxygenase (5-LO) inhibitor, the search for potent and safe 5-LO inhibitors is highly demanded. The action of several phenolic acid phenethyl esters as potential 5-Lipoxygenase (5-LO) inhibitors has been investigated. For this purpose, a series of 14 phenethyl esters was synthesized and their impact on 5-LO inhibition was evaluated. The effects of position and number of hydroxyl and methoxy groups on the phenolic acid were investigated. The shortening of the linker between the carbonyl and the catechol moiety as well as the presence of the α,β-unsaturated carbonyl group was also explored. The sinapic acid phenethyl ester (10), which can be named SAPE (10) by analogy to caffeic acid phenethyl ester (CAPE), inhibited 5-LO in a concentration-dependent manner and outperformed both zileuton (1) and CAPE (2). With an IC of 0.3 μm, SAPE (10) was threefold more potent than CAPE (2) and 10-fold more potent than zileuton (1), the only 5-LO inhibitor approved for clinical use. Unlike CAPE (2), SAPE (10) had no effect on 12-lipoxygenase (12-LO) and less effect on cyclooxygenase 1 (COX-1) which makes it a more selective 5-LO inhibitor.
To assess dried plasma spots (DPSs) as a source of material for virus quantification, human immunodeficiency virus type 1 (HIV-1) RNA levels were quantified in matched DPS and liquid plasma samples from 73 infected patients, including 5 neonates and 4 adult patients with acute HIV-1 infection. Quantifications were performed by commercially available assays (NASBA [nucleic acid sequence-based amplification] or Amplicor, or both). There was a strong correlation between HIV-1 RNA levels in plasma and DPSs. More importantly, there was no decline in HIV-1 RNA levels in DPSs stored for as long as 2 weeks at 20°C. Similarly, storage of DPSs for 3 days at 37°C resulted in no decrease in viral RNA levels. For patients with primary infection, the DPS method allowed for the measurement of RNA levels in plasma during the initial spike in the level of viremia and in the subsequent period of suppressed viral replication. DPS quantification was equally informative in the neonatal setting, with all five newborns showing HIV-1 RNA loads of greater than 4.991 log 10 copies/ml. We conclude that the viral RNA levels in DPSs are equivalent to those measured in fresh-frozen plasma. The ease and economy of DPS sampling, the minute volumes required, and the unexpected stability of dried RNA suggest that the use of DPSs will be particularly valuable for small-volume neonatal samples and large, population-based studies in which cold storage and transportation present special problems, as is often the case in developing countries. The ability to measure viral changes during primary infection suggests that the method will be useful for assessing vaccine efficacy in large field trials.
Leukotrienes are inflammatory mediators that actively participate in the inflammatory response and host defense against pathogens. However, leukotrienes also participate in chronic inflammatory diseases. 5-lipoxygenase is a key enzyme in the biosynthesis of leukotrienes and is thus a validated therapeutic target. As of today, zileuton remains the only clinically approved 5-lipoxygenase inhibitor; however, its use has been limited due to severe side effects in some patients. Hence, the search for a better 5-lipoxygenase inhibitor continues. In this study, we investigated structural analogues of caffeic acid phenethyl ester, a naturally-occurring 5-lipoxygenase inhibitor, in an attempt to enhance the inhibitory activity against 5-lipoxygenase and determine structure-activity relationships. These compounds were investigated for their ability to attenuate the biosynthesis of leukotrienes. Compounds 13 and 19, phenpropyl and diphenylethyl esters, exhibited significantly enhanced inhibitory activity when compared to the reference molecules caffeic acid phenethyl ester and zileuton.
Leukotrienes (LTs) are a class of lipid mediators implicated in numerous inflammatory disorders. Caffeic acid phenethyl ester (CAPE) possesses potent anti-LTs activity through the inhibition of 5-lipoxygenase (5-LO), the key enzyme in the biosynthesis of LTs. In this study, we describe the design and synthesis of CAPE analogs as radical scavengers and 5-LO inhibitors. Caffeic esters bearing propargyl and allyl linkers between the caffeoyl and aryl moieties (4a-i and 5a-i, respectively) were synthesized by Sonogashira and Heck cross-coupling reactions to probe the effects of flexibility and aryl substitution on 5-LO inhibition. Caffeoyl alcohol and ethers (6, 7a-b) as well as caffeoyl aldehyde and ketones (8a-e) were synthesized to elucidate the importance of the ester linkage for inhibitory activity. All tested compounds proved to be good radical scavengers (IC of 10-30 μm). After preliminary anti-LTs activity screening in HEK293 cell models, 5-LO inhibition potential of selected compounds was determined in human polymorphonuclear leukocytes (PMNL). Most screened compounds outperformed CAPE 3 in concentration-dependent assays on PMNL, with ester dimers 4i and 5i along with caffeoyl ethers 7a-b being roughly eight-, seven-, and 16-fold more potent than Zileuton, with IC values of 0.36, 0.43, and 0.18 μm, respectively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.