SUMMARY Acute myeloid leukemia (AML) manifests as phenotypically and functionally diverse cells, often within the same patient. Intratumor phenotypic and functional heterogeneity have been linked primarily by physical sorting experiments, which assume that functionally distinct subpopulations can be prospectively isolated by surface phenotypes. This assumption has proven problematic and we therefore developed a data-driven approach. Using mass cytometry, we profiled surface and intracellular signaling proteins simultaneously in millions of healthy and leukemic cells. We developed PhenoGraph, which algorithmically defines phenotypes in high-dimensional single-cell data. PhenoGraph revealed that the surface phenotypes of leukemic blasts do not necessarily reflect their intracellular state. Using hematopoietic progenitors, we defined a signaling-based measure of cellular phenotype, which led to isolation of a gene expression signature that was predictive of survival in independent cohorts. This study presents new methods for large-scale analysis of single-cell heterogeneity and demonstrates their utility, yielding insights into AML pathophysiology.
High-dimensional single-cell technologies are revolutionizing the way we understand biological systems. Technologies such as mass cytometry measure dozens of parameters simultaneously in individual cells, making interpretation daunting. We developed viSNE, a tool to map high-dimensional cytometry data onto 2D while conserving high-dimensional structure. We integrated mass cytometry with viSNE to map healthy and cancerous bone marrow samples. Healthy bone marrow maps into a canonical shape that separates between immune subtypes. In leukemia, however, the shape is malformed: the maps of cancer samples are distinct from the healthy map and from each other. viSNE highlights structure in the heterogeneity of surface phenotype expression in cancer, traverses the progression from diagnosis to relapse, and identifies a rare leukemia population in minimal residual disease settings. As several new technologies raise the number of simultaneously measured parameters in each cell to the hundreds, viSNE will become a mainstay in analyzing and interpreting such experiments.
Summary Tissue regeneration is an orchestrated progression of cells from an immature state to a mature one, conventionally represented as distinctive cell subsets. A continuum of transitional cell states exists between these discrete stages. We combine the depth of single-cell mass cytometry and an algorithm developed to leverage this continuum by aligning single cells of a given lineage onto a unified trajectory that accurately predicts the developmental path de novo. Applied to human B cell lymphopoiesis, the algorithm (termed Wanderlust) constructed trajectories spanning from hematopoietic stem cells through to naïve B cells. This trajectory revealed nascent fractions of B cell progenitors and aligned them with developmentally-cued regulatory signaling including IL-7/STAT5 and cellular events such as immunoglobulin rearrangement, highlighting checkpoints across which regulatory signals are rewired paralleling changes in cellular state. This study provides a comprehensive analysis of human B lymphopoiesis, laying a foundation to apply this approach to other tissues and “corrupted” developmental processes including cancer.
Recent single-cell analysis technologies offer an unprecedented opportunity to elucidate developmental pathways. Here we present Wishbone, an algorithm for positioning single cells along bifurcating developmental trajectories with high resolution. Wishbone uses multi-dimensional single-cell data, such as mass cytometry or RNA-seq data, as input and orders cells according to their developmental progression by pinpointing bifurcation points and labeling each cell as pre-bifurcation or as one of two post-bifurcation cell fates. Using 30-channel mass cytometry data, we show that Wishbone accurately recovers the known stages of T cell development in the mouse thymus, including the bifurcation point. We also apply the algorithm to mouse myeloid differentiation and demonstrate its generalization to additional lineages. A comparison of Wishbone to diffusion maps, SCUBA and Monocle shows that it outperforms these methods both in the accuracy of ordering cells and in the correct identification of branch points.
An accurate dissection of sources of cell-to-cell variability is crucial for quantitative biology at the single-cell level but has been challenging for the cell cycle. We present Cycler, a robust method that constructs a continuous trajectory of cell-cycle progression from images of fixed cells. Cycler handles heterogeneous microenvironments and does not require perturbations or genetic markers, making it generally applicable to quantifying multiple sources of cell-to-cell variability in mammalian cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.