Respiratory infections with both seasonal as well as potential pandemic Influenza viruses represent a significant burden on human health. Furthermore, viruses such as Influenza are increasingly recognized as important etiologic agents in community acquired pneumonia. Within the United States alone ~12.9 million people are heavy drinkers and chronic abuse of alcohol is known to increase the risk and severity of community acquired pneumonia. Given the lack of knowledge regarding Influenza disease in this population, we determined the effects of chronic alcohol consumption on Influenza virus infection. Herein, we report that mice exposed to chronic ethanol have sharp increases in morbidity, mortality, and pulmonary virus titers relative to controls. These increases in influenza severity correspond with inhibited pulmonary influenza-specific CD8 T cell responses. Further, chronic ethanol consumption results in an enhanced pulmonary lesion severity, similar to that recently described for pandemic influenzas. Together, our results suggest that chronic alcohol consumption may increase the risk for severe influenza virus infections by altering the pulmonary inflammatory environment and CD8 T cell response.
Alcohol use by pregnant women is a significant public health issue despite well-described risks to the fetus including physical and intellectual growth retardation and malformations. Although clinical studies are limited, they suggest that in utero alcohol exposure also results in significant immune deficiencies in naive neonates. However, little is known about fetal alcohol exposure (FAE) effects on adult infections. Therefore, to determine the long-term effects of FAE on disease susceptibility and the adult immune system, we infected FAE adult mice with influenza virus. In this study, we demonstrate that mice exposed to ethanol during gestation and nursing exhibit enhanced disease severity as well as increased and sustained pulmonary viral titers following influenza virus infection. Secondary exposure to alcohol as an adult further exacerbates these effects. Moreover, we demonstrate that FAE mice have impaired adaptive immune responses, including decreased numbers of virus-specific pulmonary CD8 T cells, a decreased size and frequency of pulmonary B cell foci, and reduced production of influenza-specific Ab following influenza infection. Together, our results suggest that FAE induces significant and long-term defects in immunity and susceptibility to influenza virus infection and that FAE individuals could be at increased risk for severe and fatal respiratory infections.
Background Chronic alcoholics have increased susceptibility to and severity of infection, which are likely to be a result of impaired immune defense mechanisms. The contribution of dendritic cells (DC) to these immune defense changes is not well understood. Alterations in DC numbers, dendropoiesis, and lifespan have not been specifically studied in vivo in chronic ethanol (EtOH) exposure models. As DC play an essential role in initiating immune responses, alterations in these DC characteristics would help explain changes observed in adaptive immune responses. Methods Mice received 20% EtOH (w/v) in the drinking water for up to 28 weeks, with mouse chow ad libitum. In EtOH-fed and water control mice, DC were enumerated by flow cytometry. The effect of EtOH on DC precursor numbers was determined by differentiation in vitro in the presence of granulocyte-macrophage colony-stimulating factor and interleukin-4, and the effect of an EtOH environment on untreated DC differentiation was measured following bone marrow transfer to irradiated hosts. DC turnover rate was also examined by bromodeoxyuridine incorporation and loss. Results The percentage and absolute numbers of DC were decreased in spleen and increased in thymus beginning as early as 4 weeks of EtOH feeding. In addition, the overall cellularity of spleen and thymus were altered by this regimen. However, chronic EtOH consumption did not adversely affect DC precursor numbers, differentiation abilities, or turnover rates. Conclusions Decreased splenic DC numbers observed following chronic murine EtOH consumption are not because of altered DC precursor numbers or differentiation, nor increased DC turnover rate. Similarly, increased thymic DC numbers are not the result of alterations in DC precursor differentiation or turnover rate. Compartment size plays a role in determining splenic and thymic DC numbers following chronic EtOH feeding. EtOH-induced alterations in total DC numbers provide several mechanisms to partially explain why chronic alcoholics have increased susceptibility to infections.
Background-As initiators of immune responses, dendritic cells (DCs) are required for antigen (Ag) specific activation of naïve T cells in the defense against infectious agents. The increased susceptibility to and severity of infection seen in chronic alcoholics could be due to impaired DC initiation of naïve T cell responses. Specifically, these DC may not provide adequate Signals 1 (Ag presentation), 2 (costimulation), or 3 (cytokine production) to these T cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.