Laser-based compact MeV X-ray sources are useful for a variety of applications such as radiography and active interrogation of nuclear materials. MeV X rays are typically generated by impinging the intense laser onto ~mm-thick high-Z foil. Here, we have characterized such a MeV X-ray source from 120 TW (80 J, 650 fs) laser interaction with a 1 mm-thick tantalum foil. Our measurements show X-ray temperature of 2.5 MeV, flux of 3 × 1012 photons/sr/shot, beam divergence of ~0.1 sr, conversion efficiency of ~1%, that is, ~1 J of MeV X rays out of 80 J incident laser, and source size of 80 m. Our measurement also shows that MeV X-ray yield and temperature is largely insensitive to nanosecond laser contrasts up to 10−5. Also, preliminary measurements of similar MeV X-ray source using a double-foil scheme, where the laser-driven hot electrons from a thin foil undergoing relativistic transparency impinging onto a second high-Z converter foil separated by 50–400 m, show MeV X-ray yield more than an order of magnitude lower compared with the single-foil results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.