Background: Successful containment strategies for SARS-CoV-2, the causative virus of the COVID-19 pandemic, have involved widespread population testing that identifies infections early and enables rapid contact tracing. In this study, we developed a rapid and inexpensive RT-qPCR testing pipeline for population-level SARS-CoV-2 detection, and used this pipeline to establish a clinical laboratory dedicated to COVID-19 testing at the University of California San Diego (UCSD) with a processing capacity of 6,000 samples per day and next-day result turnaround times. Methods and findings: Using this pipeline, we screened 6,786 healthcare workers and first responders, and 21,220 students, faculty, and staff from UCSD. Additionally, we screened 6,031 preschool-grade 12 students and staff from public and private schools across San Diego County that remained fully or partially open for in-person teaching during the pandemic. Between April 17, 2020 and February 5, 2021, participants provided 161,582 nasal swabs that were tested for the presence of SARS-CoV-2. Overall, 752 positive tests were obtained, yielding a test positivity rate of 0.47%. While the presence of symptoms was significantly correlated with higher viral load, most of the COVID-19 positive participants who participated in symptom surveys were asymptomatic at the time of testing. The positivity rate among preschool-grade 12 schools that remained open for in-person teaching was similar to the positivity rate at UCSD and lower than that of San Diego County, with the children in private schools being less likely to test positive than the adults at these schools. Conclusions: Most schools across the United States have been closed for in-person learning for much of the 2020-2021 school year, and their safe reopening is a national priority. However, as there are no vaccines against SARS-CoV-2 currently available to the majority of school-aged children, the traditional strategies of mandatory masking, physical distancing, and repeated viral testing of students and staff remain key components of risk mitigation in these settings. The data presented here suggest that the safety measures and repeated testing actions taken by participating healthcare and educational facilities were effective in preventing outbreaks, and that a similar combination of risk-mitigation strategies and repeated testing may be successfully adopted by other healthcare and educational systems.
The notochord is a key structure during chordate development. We have previously identified several enhancers regulated by Zic and ETS that encode notochord activity within the marine chordate Ciona robusta (Ciona). To better understand the role of Zic and ETS within notochord enhancers, we tested 90 genomic elements containing Zic and ETS sites for expression in developing Ciona embryos using a whole-embryo, massively parallel reporter assay. We discovered that 39/90 of the elements were active in developing embryos; however only 10% were active within the notochord, indicating that more than just Zic and ETS sites are required for notochord expression. Further analysis revealed notochord enhancers were regulated by three groups of factors: (1) Zic and ETS, (2) Zic, ETS and Brachyury (Bra), and (3) Zic, ETS, Bra and FoxA. One of these notochord enhancers, regulated by Zic and ETS, is located upstream of laminin alpha, a gene critical for notochord development in both Ciona and vertebrates. Reversing the ETS sites in this enhancer greatly diminish expression, indicating that enhancer grammar is critical for enhancer activity. Strikingly, we find clusters of Zic and ETS binding sites within the introns of mouse and human laminin alpha 1 with conserved enhancer grammar. Our analysis also identified two notochord enhancers regulated by Zic, ETS, FoxA and Bra binding sites: the Bra Shadow (BraS) enhancer located in close proximity to Bra, and an enhancer located near the gene Lrig. Randomizing the BraS enhancer demonstrates that although the Zic and ETS sites are necessary for enhancer activity, they are not sufficient. We find that FoxA and Bra sites contribute to BraS enhancer activity. Zic, ETS, FoxA and Bra binding sites occur within the Ciona Bra434 enhancer and vertebrate notochord Brachyury enhancers, suggesting a conserved regulatory logic. Collectively, this study deepens our understanding of how enhancers encode notochord expression, illustrates the importance of enhancer grammar, and hints at the conservation of enhancer logic and grammar across chordates.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.