Speech signals are degraded in real-life environments, product of background noise or other factors. The processing of such signals for voice recognition and voice analysis systems presents important challenges. One of the conditions that make adverse quality difficult to handle in those systems is reverberation, produced by sound wave reflections that travel from the source to the microphone in multiple directions.To enhance signals in such adverse conditions, several deep learning-based methods have been proposed and proven to be effective. Recently, recurrent neural networks, especially those with long and short-term memory (LSTM), have presented surprising results in tasks related to time-dependent processing of signals, such as speech. One of the most challenging aspects of LSTM networks is the high computational cost of the training procedure, which has limited extended experimentation in several cases. In this work, we present a proposal to evaluate the hybrid models of neural networks to learn different reverberation conditions without any previous information. The results show that some combination of LSTM and perceptron layers produce good results in comparison to those from pure LSTM networks, given a fixed number of layers. The evaluation has been made based on quality measurements of the signal's spectrum, training time of the networks and statistical validation of results. Results help to affirm the fact that hybrid networks represent an important solution for speech signal enhancement, with advantages in efficiency, but without a significan drop in quality.
Speech signals are degraded in real-life environments, as a product of background noise or other factors. The processing of such signals for voice recognition and voice analysis systems presents important challenges. One of the conditions that make adverse quality difficult to handle in those systems is reverberation, produced by sound wave reflections that travel from the source to the microphone in multiple directions. To enhance signals in such adverse conditions, several deep learning-based methods have been proposed and proven to be effective. Recently, recurrent neural networks, especially those with long short-term memory (LSTM), have presented surprising results in tasks related to time-dependent processing of signals, such as speech. One of the most challenging aspects of LSTM networks is the high computational cost of the training procedure, which has limited extended experimentation in several cases. In this work, we present a proposal to evaluate the hybrid models of neural networks to learn different reverberation conditions without any previous information. The results show that some combinations of LSTM and perceptron layers produce good results in comparison to those from pure LSTM networks, given a fixed number of layers. The evaluation was made based on quality measurements of the signal’s spectrum, the training time of the networks, and statistical validation of results. In total, 120 artificial neural networks of eight different types were trained and compared. The results help to affirm the fact that hybrid networks represent an important solution for speech signal enhancement, given that reduction in training time is on the order of 30%, in processes that can normally take several days or weeks, depending on the amount of data. The results also present advantages in efficiency, but without a significant drop in quality.
The purpose of speech enhancement is to improve the quality of speech signals degraded by noise, reverberation, or other artifacts that can affect the intelligibility, automatic recognition, or other attributes involved in speech technologies and telecommunications, among others. In such applications, it is essential to provide methods to enhance the signals to allow the understanding of the messages or adequate processing of the speech. For this purpose, during the past few decades, several techniques have been proposed and implemented for the abundance of possible conditions and applications. Recently, those methods based on deep learning seem to outperform previous proposals even on real-time processing. Among the new explorations found in the literature, the hybrid approaches have been presented as a possibility to extend the capacity of individual methods, and therefore increase their capacity for the applications. In this paper, we evaluate a hybrid approach that combines both deep learning and wavelet transformation. The extensive experimentation performed to select the proper wavelets and the training of neural networks allowed us to assess whether the hybrid approach is of benefit or not for the speech enhancement task under several types and levels of noise, providing relevant information for future implementations.
Denoising speech signals represent a challenging task due to the increasing number of applications and technologies currently implemented in communication and portable devices. In those applications, challenging environmental conditions such as background noise, reverberation, and other sound artifacts can affect the quality of the signals. As a result, it also impacts the systems for speech recognition, speaker identification, and sound source localization, among many others. For denoising the speech signals degraded with the many kinds and possibly different levels of noise, several algorithms have been proposed during the past decades, with recent proposals based on deep learning presented as state-of-the-art, in particular those based on Long Short-Term Memory Networks (LSTM and Bidirectional-LSMT). In this work, a comparative study on different transfer learning strategies for reducing training time and increase the effectiveness of this kind of network is presented. The reduction in training time is one of the most critical challenges due to the high computational cost of training LSTM and BLSTM. Those strategies arose from the different options to initialize the networks, using clean or noisy information of several types. Results show the convenience of transferring information from a single case of denoising network to the rest, with a significant reduction in training time and denoising capabilities of the BLSTM networks.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.