The purpose of this study was to investigate the effects of latanoprost, an ocular hypotensive prostaglandin analog, on scleral collagen fibers and laminar pores in myopic guinea pigs. Young guinea pigs underwent monocular form deprivation (FD; white plastic diffusers) from 14-days of age for 10-weeks. After the first week, FD eyes also received daily topical A) latanoprost (Lat, 0.005%, n = 5) or B) artificial tears (AT; n = 5). At the end of the treatment period, animals were sacrificed, eyes enucleated and optic nerve heads (ONH) excised to include a 4 mm diameter ring of surrounding sclera for scanning electron microscopy (SEM), and an additional 6 mm ring of sclera surrounding the ONH was excised for transmission electron microscopy (TEM). For SEM, ONH samples were first immersed in 0.2M NaOH for 30 h to isolate the collagenous structures. All samples were stained with osmium tetroxide, dried through an ethanol series and finally subjected to critical point drying before imaging. Image J was used to analyze the dimensions of laminar pores (SEM images) and scleral collagen fibers (TEM images). As previously reported in a related study, latanoprost was effective in inhibiting myopia progression in FD eyes of the guinea pigs. The scleral fibers of FD myopic eyes treated with AT were smaller and more variable in cross-sectional areas compared to untreated (fellow) eyes (mean areas: 0.0059 ± 0.0013 vs. 0.0085 ± 0.002 μm 2 ; p < 0.001), consistent with scleral changes reported for human myopia. In contrast, the scleral fibers of the Lat-treated FD eyes were similar to those of fellow eyes (0.0083 ± 0.002 vs. 0.0078 ± 0.0014 μm 2 ). However, laminar pore size appeared unaffected by either the FD or drug treatments, with no significant difference found between FD eyes and their fellows, for either treatment group. That daily topical latanoprost appeared to protect against myopia-related changes in scleral collagen, rather than exaggerating them, as might be predicted from its known action on the uveoscleral extracellular matrix, lends further support its use for myopia control. In this guinea pig myopia model, the lamina cribrosa appeared unaffected.
Larval zebrafish possess a number of molecular and genetic advantages for rigorous biological analyses of learning and memory. These advantages have motivated the search for novel forms of memory in these animals that can be exploited for understanding the cellular and molecular bases of vertebrate memory formation and consolidation. Here, we report a new form of behavioral sensitization in zebrafish larvae that is elicited by an aversive chemical stimulus [allyl isothiocyanate (AITC)] and that persists for ≥30 min. This form of sensitization is expressed as enhanced locomotion and thigmotaxis, as well as elevated heart rate. To characterize the neural basis of this nonassociative memory, we used transgenic zebrafish expressing the fluorescent calcium indicator GCaMP6 ( Chen et al., 2013 ); because of the transparency of larval zebrafish, we could optically monitor neural activity in the brain of intact transgenic zebrafish before and after the induction of sensitization. We found a distinct brain area, previously linked to locomotion, that exhibited persistently enhanced neural activity following washout of AITC; this enhanced neural activity correlated with the behavioral sensitization. These results establish a novel form of memory in larval zebrafish and begin to unravel the neural basis of this memory.
A global public health emergency like the Coronavirus Infectious Disease 2019 (COVID-19) pandemic requires accurate and timely data collection in the research community. High-impact research in science, technology, engineering, and mathematics (STEM) has been prioritized in the fight against COVID-19. The present study analyzed the consequences of COVID-19 on STEM research and the collaboration between research institutions and industries worldwide. It was noted that COVID-19 had caused significant delays in non-COVID-19-related research projects and the onset of several remote studies. Most importantly, researchers in the STEM fields directed their attention and expertise to help mitigate virus transmission, treat patients, and implement appropriate public health interventions. Innovations are being integrated in several fields of technological and engineering research to provide optimal patient care and enhance physical distancing measures. Global research platforms are also designed to encourage accelerated research, especially in potential medicinal treatment. Collaboration amongst different disciplines and countries has enabled remarkable progress in the dissemination of scientific knowledge and appropriate responses to address the multifaceted effects of this pandemic on global research in STEM.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.