Summary Angiogenesis, the growth of new capillary blood vessels, is a central regulator of cancer growth, and a validated target for cancer therapy. The antiangiogenic agents in clinical use target one or more cellular pathways involved in the cascade of vascular growth. In haematological malignancies, angiogenesis occurs within a bone marrow ecosystem comprised of closely apposed malignant cells, endothelial cells, pericytes, fibroblasts, endothelial progenitor cells, dendritic cells, and extracellular matrix. Inhibition of angiogenesis therefore blocks not only the delivery of oxygen and micronutrients to cancer cells, but also disrupts the interdependency of these cellular players and the paracrine effects they exert to maintain the malignant phenotype. Agents such as thalidomide, lenalidomide, bortezomib, and bevacizumab, have demonstrated clinical activity in myeloma, myelodysplastic syndrome, and leukaemias. In leukaemia, vascular endothelial growth factor (VEGF) is emerging as a compelling biological target for therapy, as well as a potential predictive marker for disease relapse. Initial clinical studies suggest that the anti‐VEGF strategies may advance the primary, sequential or adjunctive treatment for leukaemia, and establish the basis for other potential antiangiogenic strategies in haematological malignancies.
Between 2000 and 2050, the number of new cancer patients diagnosed annually is expected to double, with an accompanying increase in treatment costs of more than $80 billion over just the next decade. Efficacious strategies for cancer prevention will therefore be vital for improving patients' quality of life and reducing healthcare costs. Judah Folkman first proposed antiangiogenesis as a strategy for preventing dormant microtumors from progressing to invasive cancer. Although antiangiogenic drugs are now available for many advanced malignancies (colorectal, lung, breast, kidney, liver, brain, thyroid, neuroendocrine, multiple myeloma, myelodysplastic syndrome), cost and toxicity considerations preclude their broad use for cancer prevention. Potent antiangiogenic molecules have now been identified in dietary sources, suggesting that a rationally designed antiangiogenic diet could provide a safe, widely available, and novel strategy for preventing cancer. This paper presents the scientific, epidemiologic, and clinical evidence supporting the role of an antiangiogenic diet for cancer prevention.
Tumor progression depends on the intricate interplay between biological processes that span the molecular and macroscopic scales. A mathematical agent-based model is presented to describe the 3-D (three-dimensional) progression of a brain tumor type (i.e., glioblastoma multiforme) as the collective behavior of individual tumor cells whose fate is determined by intracellular signaling pathways (i.e., MAPK pathway) that are governed by the temporal-spatial distribution of key biochemical cues (i.e., growth factors, nutrients). The model is used to investigate how tumor growth and invasiveness depend on the response of migrating tumor cells to chemoattractants. Simulation results suggest that individual cell sensitivity to chemical gradients is necessary to generate in silico tumors with the irregular shape and diffusive tumor-stroma interface characteristic of glioblastomas. In addition, vascular network damage influences tumor growth and invasiveness. The results quantitatively recapitulate the central role that nutrient availability and signaling proteins have on tumor invasive properties.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.