Endothelial cells in growing tumors express activated Akt, which when modeled by transgenic endothelial expression of myrAkt1 was sufficient to recapitulate the abnormal structural and functional features of tumor blood vessels in nontumor tissues. Sustained endothelial Akt activation caused increased blood vessel size and generalized edema from chronic vascular permeability, while acute permeability in response to VEGF-A was unaffected. These changes were reversible, demonstrating an ongoing requirement for Akt signaling for the maintenance of these phenotypes. Furthermore, rapamycin inhibited endothelial Akt signaling, vascular changes from myrAkt1, tumor growth, and tumor vascular permeability. Akt signaling in the tumor vascular stroma was sensitive to rapamycin, suggesting that rapamycin may affect tumor growth in part by acting as a vascular Akt inhibitor.
Caveolae in endothelial cells have been implicated as plasma membrane microdomains that sense or transduce hemodynamic changes into biochemical signals that regulate vascular function. Therefore we compared longand short-term flow-mediated mechanotransduction in vessels from WT mice, caveolin-1 knockout (Cav-1 KO) mice, and Cav-1 KO mice reconstituted with a transgene expressing Cav-1 specifically in endothelial cells (Cav-1 RC mice). Arterial remodeling during chronic changes in flow and shear stress were initially examined in these mice. Ligation of the left external carotid for 14 days to lower blood flow in the common carotid artery reduced the lumen diameter of carotid arteries from WT and Cav-1 RC mice. In Cav-1 KO mice, the decrease in blood flow did not reduce the lumen diameter but paradoxically increased wall thickness and cellular proliferation. In addition, in isolated pressurized carotid arteries, flow-mediated dilation was markedly reduced in Cav-1 KO arteries compared with those of WT mice. This impairment in response to flow was rescued by reconstituting Cav-1 into the endothelium. In conclusion, these results showed that endothelial Cav-1 and caveolae are necessary for both rapid and long-term mechanotransduction in intact blood vessels.
Tumor vasculature is hyperpermeable to macromolecules compared to normal vasculature; however, the relationship between tumor hyperpermeability and tumor progression is poorly understood. Here we show that a cell-permeable peptide derived from caveolin-1, termed cavtratin, reduces microvascular hyperpermeability and delays tumor progression in mice. These antipermeability and antitumor actions of cavtratin occur in the absence of direct cytostatic or antiangiogenic effects. Cavtratin blocks microvascular permeability by inhibiting endothelial nitric oxide synthase (eNOS), as the antipermeability and antitumor actions of cavtratin are markedly diminished in eNOS knockout mice. Our results support the concepts that hyperpermeability of tumor blood vessels contributes to tumor progression and that blockade of eNOS may be exploited as a novel target for antitumor therapy.
Caveolin-1 (Cav-1) is the principal structural component of caveolae organelles in smooth muscle cells, adipocytes, fibroblasts, epithelial cells, and endothelial cells (ECs). Cav-1–deficient (Cav-1 knockout [KO]) mice are viable and show increases of nitric oxide (NO) production in vasculature, cardiomyopathy, and pulmonary dysfunction. In this study, we generated EC-specific Cav-1–reconstituted (Cav-1 RC) mice and reexamined vascular, cardiac, and pulmonary phenotypes. Cav-1 KO pulmonary arteries had decreased smooth muscle contractility and increased endothelial NO synthase activation and hypotension; the latter two effects were rescued completely in Cav-1 RC mice. Cav-1 KO mice exhibited myocardial hypertrophy, pulmonary hypertension, and alveolar cell hyperproliferation caused by constitutive activation of p42/44 mitogen-activated protein kinase and Akt. Interestingly, in Cav-1 RC mice, cardiac hypertrophy and pulmonary hypertension were completely rescued, whereas alveolar hyperplasia was partially recovered because of the lack of rescue of Cav-1 in bronchiolar epithelial cells. These results provide clear physiological evidence supporting the important role of cell type–specific Cav-1 expression governing multiple phenotypes in the vasculature, heart, and lung.
There is evidence that endothelial nitric-oxide synthase (eNOS) is regulated by reciprocal dephosphorylation of Thr 497 and phosphorylation of Ser 1179 . To examine the interrelationship between these sites, cells were transfected with wild-type (WT), T497A, T497D, S1179D, and T497A/S1179D eNOS and activity, NO release and eNOS localization were assessed. Although eNOS T497A, S1179D and T497A/S1179D eNOS had greater enzymatic activity than did WT eNOS in lysates, basal production of NO from cells was markedly reduced in cells transfected with T497A and T497A/S1179D eNOS but augmented in cells transfected with S1179D eNOS. Stimulating cells with ATP or ionophore normalized the loss of function seen with T497A and T497A/S1179D eNOS to levels observed with WT and S1179D eNOS, respectively. Despite these functional differences, the localization of eNOS mutants were similar to WT. Because both T497A and T497A/S1179D eNOS exhibited higher enzyme activity but reduced production of NO, we examined whether these mutations were "uncoupling" NO synthesis. T497A and T497A/S1179D eNOS generated 2-3 times more superoxide anion than WT eNOS, and both basal and stimulated interactions of T497A/S1179D eNOS with hsp90 were reduced in co-immunoprecipitation experiments. Thus, the phosphorylation/dephosphorylation of Thr 497 may be an intrinsic switch mechanism that determines whether eNOS generates NO versus superoxide in cells. Endothelial nitric-oxide synthase (eNOS)1 produces the free radical gas, nitric oxide, which has been implicated in the regulation of cardiovascular homeostasis. Due to its importance to overall cardiovascular health, nature has evolved multiple control mechanisms that tightly regulate the enzymatic function of eNOS. eNOS is a prototype for proteins regulated by spatial and temporal signals, namely subcellular targeting to the Golgi complex and lipid rafts/caveolae by protein-protein interactions and phosphorylation events (1). These complex post-translational mechanisms control the state of eNOS activation/inactivation and the fidelity of electron flux through the reductase domain of the protein to the oxygenase domain where the chemistry of NO synthesis occurs. Dysregulation of the synthesis of eNOS cofactors, protein-protein interactions, and phosphorylation could potentially "uncouple eNOS," i.e. electron transfer reactions result in the production of superoxide, instead of NO.eNOS can be phosphorylated on serines 116, 617, 635, and 1179 and phosphorylated on threonine 497 (bovine amino acids) (2-9). The phosphorylation of serines 617, 635, and 1179 all result in the activation of eNOS function, whereas the phosphorylation of serine 116 and threonine 497 may reduce eNOS function (3,4,7,10). There is a good correlation between threonine 497 (bovine)/threonine 495 (human) dephosphorylation and NO production (measured as cGMP) but not Ser 1179 phosphorylation when bradykinin is used as an agonist for NO production, suggesting that Thr 497 dephosphorylation is sufficient for eNOS activation (3, 4, 7). Usin...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.