Accurate estimates of survival are crucial for many management decisions in translocation programs. Maximizing detection probabilities and reducing sampling biases for released animals can aid in estimates of survival. One important source of sampling bias is an animal’s behavior. For example, individuals that are consistently more exploratory or active may be more likely to be detected visually. Behavioral traits can be related to survival after reintroduction, and because many pre‐release treatments aim to manipulate animal behavior, it is critical to tease apart relationships between behavior and detection probability. Here, we assessed the repeatability (intra‐individual consistency and inter‐individual variation) of behavioral traits for an endangered amphibian, the mountain yellow‐legged frog (Rana muscosa). Because new technological tools offer one potential solution for reducing sampling biases while increasing detection, we also tested whether a long‐range passive integrated transponder (PIT) tag reader could enhance surveys for these individuals after translocation into the wild. After confirming that ex situ bred R. muscosa exhibit repeatable behavioral traits (repeatability = 0.25–0.41) and releasing these frogs (N = 196) into the wild, we conducted post‐release surveys visually and with the long‐range PIT tag reader. Integrating the long‐range reader into surveys improved detection probability four‐fold in comparison to visual surveys alone (~0.09 to ~0.36). Moreover, mark–recapture modeling revealed that tag reader detection probability was not biased toward detecting individuals of specific behavioral types, while visual detection was significantly related to behavioral traits. These results will enable a more accurate understanding of individual differences in post‐release success in translocations. This may be particularly important for amphibian species, which can be difficult to detect and are expected to increasingly be involved in human‐managed breeding and translocation programs due to their vulnerable conservation status.
Ovarian control and monitoring in amphibians require a multi-faceted approach. There are several applications that can successfully induce reproductive behaviors and the acquisition of gametes and embryos for physiological or molecular research. Amphibians contribute to onequarter to one-third of vertebrate research, and of interest in this context is their contribution to the scientific community's knowledge of reproductive processes and embryological development. However, most of this knowledge is derived from a small number of species. In recent times, the decimation of amphibians across the globe has required increasing intervention by conservationists. The captive recovery and assurance colonies that continue to emerge in response to the extinction risk make existing research and clinical applications invaluable to the survival and reproduction of amphibians held under human care. The success of any captive population is founded on its health and reproduction and the ability to develop viable offspring that carry forward the most diverse genetic representation of their species. For researchers and veterinarians, the ability to monitor and control ovarian development and health is, therefore, imperative. The focus of this article is to highlight the different assisted reproductive techniques that can be used to monitor and, where appropriate or necessary, control ovarian function in amphibians. Ideally, any reproductive and health issues should be reduced through proper captive husbandry, but, as with any animal, issues of health and reproductive pathologies are inevitable. Non-invasive techniques include behavioral assessments, visual inspection and palpation and morphometric measurements for the calculation of body condition indices and ultrasound. Invasive techniques include hormonal injections, blood sampling, and surgery. Ovarian control can be exercised in a number of ways depending on the application required and species of interest.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.