Ixodes ricinus is the vector for Borrelia afzelii, the predominant cause of Lyme borreliosis in Europe, whereas Ixodes scapularis is the vector for Borrelia burgdorferi in the USA. Transcription of several I. scapularis genes changes in the presence of B. burgdorferi and contributes to successful infection. To what extend B. afzelii influences gene expression in I. ricinus salivary glands is largely unknown. Therefore, we measured expression of uninfected vs. infected tick salivary gland genes during tick feeding using Massive Analysis of cDNA Ends (MACE) and RNAseq, quantifying 26.179 unique transcripts. While tick feeding was the main differentiator, B. afzelii infection significantly affected expression of hundreds of transcripts, including 465 transcripts after 24 h of tick feeding. Validation of the top-20 B. afzelii-upregulated transcripts at 24 h of tick feeding in ten biological genetic distinct replicates showed that expression varied extensively. Three transcripts could be validated, a basic tail protein, a lipocalin and an ixodegrin, and might be involved in B. afzelii transmission. However, vaccination with recombinant forms of these proteins only marginally altered B. afzelii infection in I. ricinus-challenged mice for one of the proteins. Collectively, our data show that identification of tick salivary genes upregulated in the presence of pathogens could serve to identify potential pathogen-blocking vaccine candidates.
IntroductionBorrelia burgdorferi sensu lato (sl) is the causative agent of Lyme borreliosis. Currently there is no human vaccine against Lyme borreliosis, and most research focuses on recombinant protein vaccines. DNA tattoo vaccination with B. afzelii strain PKo OspC in mice has proven to be fully protective against B. afzelii syringe challenge and induces a favorable humoral immunity compared to recombinant protein vaccination. Alternatively, several recombinant protein vaccines based on tick proteins have shown promising effect in tick-bite infection models. In this study, we evaluated the efficacy of DNA vaccines against Borrelia OspC or tick antigens in a tick-bite infection model.MethodWe vaccinated C3H/HeN mice with OspC using a codon-optimized DNA vaccine or with recombinant protein. We challenged these mice with B. burgdorferi sensu stricto (ss)-infected Ixodes scapularis nymphs. Subsequently, we vaccinated C3H/HeN mice with DNA vaccines coding for tick proteins for which recombinant protein vaccines have previously resulted in interference with tick feeding and/or Borrelia transmission: Salp15, tHRF, TSLPI, and Tix-5. These mice were also challenged with B. burgdorferi ss infected Ixodes scapularis nymphs.ResultsDNA tattoo and recombinant OspC vaccination both induced total IgG responses. Borrelia cultures and DNA loads of skin and bladder remained negative in the mice vaccinated with OspC DNA vaccination, except for one culture. DNA vaccines against tick antigens Salp15 and Tix-5 induced IgG responses, while those against tHRF and TSLPI barely induced any IgG response. In addition, Borrelia cultures, and DNA loads from mice tattooed with DNA vaccines against tick proteins TSLPI, Salp15, tHRF, and Tix-5 were all positive.ConclusionA DNA tattoo vaccine against OspC induced high specific IgG titers and provided near total protection against B. burgdorferi ss infection by tick challenge. In contrast, DNA tattoo vaccines against tick proteins TSLPI, Salp15, tHRF, and Tix-5 induced low to moderate IgG titers and did not provide protection. Therefore, DNA tattoo vaccination does not seem a suitable vaccine strategy to identify, or screen for, tick antigens for anti-tick vaccines. However, DNA tattoo vaccination is a straightforward and effective vaccination platform to assess novel B. burgdorferi sl antigen candidates in a relevant tick challenge model.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.