N-Heterocyclic carbenes (NHCs) have emerged as versatile ligands for surface functionalization. Their ease of synthesis and ability to form strong bonds with a range of substrates provide a unique complement to traditional surface modification methods. Gold nanoparticles (NPs) are a particularly useful class of materials whose applications intimately depend on surface functionalization. Here we report the development of PEGylated-NHC ligands for Au-NP surfaces and the first example of NHC-functionalized NPs that are compatible with biologically relevant conditions. Our PEGylated-NHC-Au-NPs are stable toward aggregation in aqueous solutions in the pH range of 3-14, in <250 mM electrolyte solutions, at high and low temperatures (95 and -78 °C), in cell culture media, and in aqueous H2O2 solutions. This work demonstrates for the first time that NHCs can serve as anchors for water-soluble Au-NPs and opens the door to potential biomedical applications of NHC surface anchors.
Living
radical polymerization of acrylates and acrylamides from
trithiocarbonate iniferters using a compact fluorescent lamp (CFL)
bulb and 10-phenylphenothiazine as an organic photoredox catalyst
is reported. With this system, chain growth can be efficiently switched
between “on” and “off” in response to
visible light. Polymer molar masses increase linearly with conversion,
and narrow molar mass distributions are obtained. The excellent fidelity
of the trithiocarbonate-iniferter enables the preparation of triblock
copolymers from macro-iniferters under the same visible-light mediated
protocol, using UV light without a photoredox catalyst or under traditional
thermally induced RAFT conditions. We expect that the simplicity and
efficiency of this metal-free, visible-light-mediated polymerization
will enable the synthesis and modification of a range of materials
under mild conditions.
Strategies for switching polymerizations between "ON" and "OFF" states offer new possibilities for materials design and fabrication. While switching of controlled radical polymerization has been achieve using light, applied voltage, allosteric effects, chemical reagents, pH, and mechanical force, it is still challenging to introduce multiple external switches using the same catalyst to achieve logic gating of controlled polymerization reactions. Herein, we report an easy-to-synthesize thermally responsive organo-/hydro-gel that features covalently bound 10-phenylphenothiazine (PTH). With this "Gel-PTH", we demonstrate switching of controlled radical polymerization reactions using temperature "LOW"/"HIGH", light "ON"/"OFF", and catalyst presence "IN"/"OUT". Various iniferters/initiators and a wide range of monomers including acrylates, methacrylates, acrylamides, vinyl esters, and vinyl amides were polymerized by RAFT/iniferter and ATRP methods using Gel-PTH and a readily available compact fluorescent light (CFL) source. In all cases, polymer molar masses increased linearly with conversion, and narrow molar mass distributions were obtained. To further highlight the utility of Gel-PTH, we achieved "AND" gating of controlled radical polymerization wherein various combinations of three stimuli were required to induce polymer chain growth. Finally, block copolymer synthesis and catalyst recycling were demonstrated. Logic-controlled polymerization with Gel-PTH offers a straightforward approach to achieve multiplexed external switching of polymer chain growth using a single catalyst without the need for addition of exogenous reagents.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.