Transactional memory (TM)
Nested transactional memory (TM) facilitates software composition by letting one module invoke another without either knowing whether the other uses transactions. Closed nested transactions extend isolation of an inner transaction until the toplevel transaction commits. Implementations may flatten nested transactions into the top-level one, resulting in a complete abort on conflict, or allow partial abort of inner transactions. Open nested transactions allow a committing inner transaction to immediately release isolation, which increases parallelism and expressiveness at the cost of both software and hardware complexity. This paper extends the recently-proposed flat Log-based Transactional Memory (LogTM) with nested transactions. Flat LogTM saves pre-transaction values in a log, detects conflicts with read (R) and write (W) bits per cache block, and, on abort, invokes a software handler to unroll the log. Nested LogTM supports nesting by segmenting the log into a stack of activation records and modestly replicating R/W bits. To facilitate composition with nontransactional code, such as language runtime and operating system services, we propose escape actions that allow trusted code to run outside the confines of the transactional memory system.
Nested transactional memory (TM) facilitates software composition by letting one module invoke another without either knowing whether the other uses transactions. Closed nested transactions extend isolation of an inner transaction until the toplevel transaction commits. Implementations may flatten nested transactions into the top-level one, resulting in a complete abort on conflict, or allow partial abort of inner transactions. Open nested transactions allow a committing inner transaction to immediately release isolation, which increases parallelism and expressiveness at the cost of both software and hardware complexity.This paper extends the recently-proposed flat Log-based Transactional Memory (LogTM) with nested transactions. Flat LogTM saves pre-transaction values in a log, detects conflicts with read (R) and write (W) bits per cache block, and, on abort, invokes a software handler to unroll the log. Nested LogTM supports nesting by segmenting the log into a stack of activation records and modestly replicating R/W bits. To facilitate composition with nontransactional code, such as language runtime and operating system services, we propose escape actions that allow trusted code to run outside the confines of the transactional memory system.
Nested transactional memory (TM) facilitates software composition by letting one module invoke another without either knowing whether the other uses transactions. Closed nested transactions extend isolation of an inner transaction until the toplevel transaction commits. Implementations may flatten nested transactions into the top-level one, resulting in a complete abort on conflict, or allow partial abort of inner transactions. Open nested transactions allow a committing inner transaction to immediately release isolation, which increases parallelism and expressiveness at the cost of both software and hardware complexity.This paper extends the recently-proposed flat Log-based Transactional Memory (LogTM) with nested transactions. Flat LogTM saves pre-transaction values in a log, detects conflicts with read (R) and write (W) bits per cache block, and, on abort, invokes a software handler to unroll the log. Nested LogTM supports nesting by segmenting the log into a stack of activation records and modestly replicating R/W bits. To facilitate composition with nontransactional code, such as language runtime and operating system services, we propose escape actions that allow trusted code to run outside the confines of the transactional memory system.
Nested transactional memory (TM) facilitates software composition by letting one module invoke another without either knowing whether the other uses transactions. Closed nested transactions extend isolation of an inner transaction until the toplevel transaction commits. Implementations may flatten nested transactions into the top-level one, resulting in a complete abort on conflict, or allow partial abort of inner transactions. Open nested transactions allow a committing inner transaction to immediately release isolation, which increases parallelism and expressiveness at the cost of both software and hardware complexity. This paper extends the recently-proposed flat Log-based Transactional Memory (LogTM) with nested transactions. FlatLogTM saves pre-transaction values in a log, detects conflicts with read (R) and write (W) bits per cache block, and, on abort, invokes a software handler to unroll the log. Nested LogTM supports nesting by segmenting the log into a stack of activation records and modestly replicating R/W bits. To facilitate composition with nontransactional code, such as language runtime and operating system services, we propose escape actions that allow trusted code to run outside the confines of the transactional memory system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.