The activation state of many blood and vascular cells is tightly controlled by a delicate balance between receptors that contain immunoreceptor tyrosine-based activation motifs (ITAMs) and those that contain immunoreceptor tyrosine-based inhibitory motifs (ITIMs). Precisely how the timing of cellular activation by ITAM-coupled receptors is regulated by ITIM-containing receptors is, however, poorly understood. Using platelet endothelial cell adhesion molecule 1 (PECAM-1) as a prototypical ITIM-bearing receptor, we demonstrate that initiation of inhibitory signaling occurs via a novel, sequential process in which Src family kinases phosphorylate the C-terminal ITIM, thereby enabling phosphorylation of the N-terminal ITIM of PECAM-1 by other Src homology 2 domain-containing non-receptor tyrosine kinases (NRTKs). NRTKs capable of mediating the second phosphorylation event include C-terminal Src kinase (Csk) and Bruton’s tyrosine kinase (Btk). Btk and Csk function downstream of phosphatidylinositol 3-kinase (PI3K) activation during ITAM-dependent platelet activation. In ITAM-activated platelets that were treated with a PI3K inhibitor, PECAM-1 was phosphorylated but did not bind the tandem SH2 domain-containing tyrosine phosphatase SHP-2, indicating that it was not phosphorylated on its N-terminal ITIM. Csk bound to and phosphorylated PECAM-1 more efficiently than did Btk, and required its SH2 domain to perform these functions. Additionally, the phosphorylation of the N-terminal ITIM of Siglec-9 by Csk is enhanced by the prior phosphorylation of its C-terminal ITIM, providing evidence that the ITIMs of other dual ITIM-containing receptors are also sequentially phosphorylated. On the basis of these findings, we propose that sequential ITIM phosphorylation provides a general mechanism for precise temporal control over the recruitment and activation of tandem SH2 domain-containing tyrosine phosphatases that dampen ITAM-dependent signals.
Background Post-surgical bleeding causes significant morbidity and mortality in children undergoing surgery for congenital heart defects (CHD). 22q11.2 deletion syndrome (DS) is the second most common genetic risk factor for CHD. The deleted segment of chromosome 22q11.2 encompasses the gene encoding glycoprotein (GP) Ibβ, which is required for expression of the GPIb-V-IX complex on the platelet surface, where it functions as the receptor for von Willebrand factor (VWF). Binding of GPIb-V-IX to VWF is important for platelets to initiate hemostasis. It is not known whether hemizygosity for the gene encoding GPIbβ increases the risk for bleeding following cardiac surgery for patients with 22q11.2 DS. Methods We performed a case-control study of 91 pediatric patients who underwent cardiac surgery with cardiopulmonary bypass from 2004–2012 at Children’s Hospital of Wisconsin. Results Patients with 22q11.2 DS had larger platelets and lower platelet counts, bled more excessively and received more transfusion support with packed red blood cells in the early post-operative period relative to control patients. Conclusions Pre-surgical genetic testing for 22q11.2 DS may help to identify a subset of pediatric cardiac surgery patients who are at increased risk for excessive bleeding and who may require more transfusion support in the post-operative period.
In patients with thrombocytopenia, it can be difficult to predict a patient’s bleeding risk based on platelet count alone. Platelet reactivity may provide additional information; however, current clinical assays cannot reliably assess platelet function in the setting of thrombocytopenia. New methods to study platelet reactivity in thrombocytopenic samples are needed. In this study, we sought to develop a laboratory model of thrombocytopenia using blood from healthy subjects that preserves the whole blood environment and reproducibly produces samples with a specific platelet count and hematocrit. We compared the activation state of unstimulated and agonist-stimulated platelets in thrombocytopenic samples derived from this method with normocytic controls. Whole blood was diluted with autologous red blood cell concentrate and platelet-poor plasma, which were obtained via centrifugation, in specific ratios to attain a final sample with a predetermined platelet count and hematocrit. P-selectin exposure and GPIIbIIIa activation in unstimulated platelets and platelets stimulated with collagen-related peptide (CRP) or adenosine diphosphate (ADP) in thrombocytopenic samples and the normocytic control from which they were derived were quantified by flow cytometry. Our methodology reliably produced thrombocytopenic samples with a platelet count ≤50,000/µL and an accurately and precisely controlled hematocrit. P-selectin exposure and GPIIbIIIa activation on unstimulated platelets or on ADP- or CRP-stimulated platelets did not differ in thrombocytopenic samples compared to normocytic controls. We describe a new method for creating thrombocytopenic blood that can be used to better understand the contributions of platelet number and function to hemostasis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.