Syntaxin resides in the plasma membrane, where it helps to catalyze membrane fusion during exocytosis. The protein also forms clusters in cell-free and granule-free plasma-membrane sheets. We imaged the interaction between syntaxin and single secretory granules by two-color total internal reflection microscopy in PC12 cells. Syntaxin-GFP assembled in clusters at sites where single granules had docked at the plasma membrane. Clusters were intermittently present at granule sites, as syntaxin molecules assembled and disassembled in a coordinated fashion. Recruitment to granules required the N-terminal domain of syntaxin, but not the entry of syntaxin into SNARE complexes. Clusters facilitated exocytosis and disassembled once exocytosis was complete. Syntaxin cluster formation defines an intermediate step in exocytosis.
SUMMARY Ischemic pain – examples include the chest pain of a heart attack and the leg pain of a 30 second sprint – occurs when muscle gets too little oxygen for its metabolic need. Lactic acid cannot act alone to trigger ischemic pain because the pH change is so small. Here we show that another compound released from ischemic muscle, ATP (adenosine tri-phosphate), works together with acid by increasing the pH sensitivity of ASIC3 (acid sensing ion channel #3), the molecule used by sensory neurons to detect lactic acidosis. Our data argue that ATP acts by binding to P2X receptors that form a molecular complex with ASICs; the receptor on sensory neurons appears to be P2X5, an electrically quiet ion channel. Coincident detection of acid and ATP should confer sensory selectivity for ischemia over other conditions of acidosis.
Before secretory vesicles undergo exocytosis, they must recruit the proteins syntaxin-1 and synaptosomal associated protein 25 (SNAP-25) in the plasma membrane. GFP-labeled versions of both proteins cluster at sites where secretory granules have docked. Single-particle tracking shows that minority populations of both molecules are strongly hindered in their mobility, consistent with their confinement in nanodomains. We measured the fluorescence of granuleassociated clusters, the fluorescence of single molecules, and the numbers of unlabeled syntaxin-1 and SNAP-25 molecules per cell. There was a more than 10-fold excess of SNAP-25 over syntaxin-1. Fifty to seventy copies each of syntaxin-1 and SNAP-25 molecules were associated with a single docked granule, many more than have been reported to be required for fusion.location-guided averaging | nanodomains | total internal reflection fluorescence | single molecules | single particle tracking
Cellular membranes contain a variety of shapes that likely act as motifs for sorting lipids and proteins. To understand the sorting that takes place within cells, a continuous, fluid bilayer with regions of membrane curvature was designed and characterized using confocal fluorescence and total internal reflection fluorescence microscopy techniques. A supported lipid bilayer was formed over fluorescently labelled nanoparticles deposited on a glass surface. The lipid composition and membrane shape are separately controlled and the nanoparticle dimensions (d = 40-200 nm) determine the extent of curvature. The bulk membrane is fluid as demonstrated by fluorescence recovery after photobleaching (FRAP) using dye labelled lipids. In bilayers that contain fluorescently labelled, single-tailed lipids, accumulation is observed at regions of curvature, yet the molecules retain fluidity. Using single particle imaging methods, lipids are observed to visit regions of curvature and exchange with the surrounding flat membrane. The nanoparticle patterned substrate described here allows for quantitative measurement of the transient interactions between fluorescently labelled biomolecules and regions of membrane curvature.
The plasma membrane is a highly compartmentalized, dynamic material and this organization is essential for a wide variety of cellular processes. Nanoscale domains allow proteins to organize for cell signaling, endo- and exocytosis, and other essential processes. Even in the absence of proteins, lipids have the ability to organize into domains as a result of a variety of chemical and physical interactions. One feature of membranes that affects lipid domain formation is membrane curvature. To directly test the role of curvature in lipid sorting, we measured the accumulation of two similar lipids, 1,2-Dihexadecanoyl-sn-glycero-3-phosphoethanolamine (DHPE) and hexadecanoic acid (HDA), using a supported lipid bilayer that was assembled over a nanopatterned surface to obtain regions of membrane curvature. Both lipids studied contain 16 carbon, saturated tails and a head group tag for fluorescence microscopy measurements. The accumulation of lipids at curvatures ranging from 28 nm to 55 nm radii was measured and fluorescein labeled DHPE accumulated more than fluorescein labeled HDA at regions of membrane curvature. We then tested whether single biotinylated DHPE molecules sense curvature using single particle tracking methods. Similar to groups of fluorescein labeled DHPE accumulating at curvature, the dynamics of single molecules of biotinylated DHPE was also affected by membrane curvature and highly confined motion was observed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.