Nitric oxide (NO) contributes to protection from tuberculosis (TB). It is generally assumed that this protection is due to direct inhibition of Mycobacterium tuberculosis (Mtb) growth, which prevents subsequent pathological inflammation. In contrast, we report NO primarily protects mice by repressing an interleukin-1 and 12/15-lipoxygenase dependent neutrophil recruitment cascade that promotes bacterial replication. Using Mtb mutants as indicators of the pathogen's environment, we inferred that granulocytic inflammation generates a nutrient-replete niche that supports Mtb growth. Parallel clinical studies indicate that a similar inflammatory pathway promotes TB in patients. The human 12/15 lipoxygenase ortholog, ALOX12, is expressed in cavitary TB lesions, the abundance of its products correlate with the number of airway neutrophils and bacterial burden, and a genetic polymorphism that increases ALOX12 expression is associated with TB risk. These data suggest that Mtb exploits neutrophilic inflammation to preferentially replicate at sites of tissue damage that promote contagion.
Exosomes can deliver therapeutic RNAs to neurons. The composition and the safety profile of exosomes depend on the type of the exosome-producing cell. Mesenchymal stem cells are considered to be an attractive cell type for therapeutic exosome production. However, scalable methods to isolate and manufacture exosomes from mesenchymal stem cells are lacking, a limitation to the clinical translation of exosome technology. We evaluate mesenchymal stem cells from different sources and find that umbilical cord-derived mesenchymal stem cells produce the highest exosome yield. To optimize exosome production, we cultivate umbilical cord-derived mesenchymal stem cells in scalable microcarrier-based threedimensional (3D) cultures. In combination with the conventional differential ultracentrifugation, 3D culture yields 20-fold more exosomes (3D-UC-exosomes) than two-dimensional cultures (2D-UC-exosomes). Tangential flow filtration (TFF) in combination with 3D mesenchymal stem cell cultures further improves the yield of exosomes (3D-TFF-exosomes) 7-fold over 3D-UC-exosomes. 3D-TFF-exosomes are seven times more potent in small interfering RNA (siRNA) transfer to neurons compared with 2D-UC-exosomes. Microcarrierbased 3D culture and TFF allow scalable production of biologically active exosomes from mesenchymal stem cells. These findings lift a major roadblock for the clinical utility of mesenchymal stem cell exosomes.
Chemical modifications of RNAs have long been established as key modulators of nonprotein-coding RNA structure and function in cells. There is a growing appreciation that messenger RNA (mRNA) sequences responsible for directing protein synthesis can also be posttranscriptionally modified. The enzymatic incorporation of mRNA modifications has many potential outcomes, including changing mRNA stability, protein recruitment, and translation. We tested how one of the most common modifications present in mRNA coding regions, pseudouridine (Ψ), impacts protein synthesis using a fully reconstituted bacterial translation system and human cells. Our work reveals that replacing a single uridine nucleotide with Ψ in an mRNA codon impedes amino acid addition and EF-Tu GTPase activation. A crystal structure of the Thermus thermophilus 70S ribosome with a tRNAPhe bound to a ΨUU codon in the A site supports these findings. We also find that the presence of Ψ can promote the low-level synthesis of multiple peptide products from a single mRNA sequence in the reconstituted translation system as well as human cells, and increases the rate of near-cognate Val-tRNAVal reacting on a ΨUU codon. The vast majority of Ψ moieties in mRNAs are found in coding regions, and our study suggests that one consequence of the ribosome encountering Ψ can be to modestly alter both translation speed and mRNA decoding.
The Sec6 subunit of the multisubunit exocyst tethering complex interacts with the Sec1/Munc18 protein Sec1 and with the t-SNARE Sec9. Assembly of the exocyst upon vesicle arrival at sites of secretion is proposed to release Sec9 for SNARE complex assembly and to recruit Sec1 for interaction with SNARE complexes to facilitate fusion.
Summary Exosomes can serve as delivery vehicles for advanced therapeutics. The components necessary and sufficient to support exosomal delivery have not been established. Here we connect biochemical composition and activity of exosomes to optimize exosome-mediated delivery of small interfering RNAs (siRNAs). This information is used to create effective artificial exosomes. We show that serum-deprived mesenchymal stem cells produce exosomes up to 22-fold more effective at delivering siRNAs to neurons than exosomes derived from control cells. Proteinase treatment of exosomes stops siRNA transfer, indicating that surface proteins on exosomes are involved in trafficking. Proteomic and lipidomic analyses show that exosomes derived in serum-deprived conditions are enriched in six protein pathways and one lipid class, dilysocardiolipin. Inspired by these findings, we engineer an “artificial exosome,” in which the incorporation of one lipid (dilysocardiolipin) and three proteins (Rab7, Desmoplakin, and AHSG) into conventional neutral liposomes produces vesicles that mimic cargo delivering activity of natural exosomes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.