We show that intracellular transcription of G-rich regions produces novel DNA structures, visible by electron microscopy as large (150-500 bp) loops. These G-loops are formed cotranscriptionally, and they contain G4 DNA on one strand and a stable RNA/DNA hybrid on the other. G-loop formation requires a G-rich nontemplate strand and reflects the unusual stability of the rG/dC base pair. G-loops and G4 DNA form efficiently within plasmid genomes transcribed in vitro or in Escherichia coli. These results establish that G4 DNA can form in vivo, a finding with implications for stability and maintenance of all G-rich genomic regions.
Translocation and aberrant hypermutation of c-MYC are common in B-cell lymphomas. Activation-induced Cytidine Deaminase (AID) initiates switch recombination and somatic hypermutation in B cells by targeted deamination of transcribed genes. We show that transcription of the immunoglobulin S regions and c-MYC results in formation of similar DNA structures, 'G-loops', which contain a cotranscriptional RNA: DNA hybrid on the C-rich strand and single-stranded regions and G4 DNA on the G-rich strand. AID binds specifically to G-loops within transcribed S regions and c-MYC, and G-loops in c-MYC map to the regions associated with translocation breakpoints and aberrant hypermutation in B-cell lymphomas. Aberrant targeting of AID to DNA structures formed upon c-MYC transcription may therefore contribute to the genetic instability of c-MYC in B-cell malignancies.
Immunoglobulin class switch recombination joins a new constant (C) region to the rearranged and expressed heavy chain variable (VDJ) region in antigen-activated B cells (Figure 1A) (reviewed in [1, 2]). Switch recombination is activated by transcription of intronic, G-rich and repetitive switch (S) regions and produces junctions that are heterogeneous in sequence and position in the S regions. Switch recombination depends upon the B cell-specific cytidine deaminase, AID, and conserved DNA repair factors, including the mismatch repair heterodimer, MutSalpha (MSH2/MSH6). In mice, ablation of Msh2 or Msh6, but not Msh3, decreases levels of switch recombination and diminishes heterogeneity of switch junctions [3-7]. Here, we demonstrate that MSH2 associates with transcribed S regions in primary murine B cells activated for switch recombination. Electron microscopic imaging reveals that MutSalpha binds in vitro to DNA structures formed within transcribed S regions and mediates their synapsis. MutSalpha binds with high affinity to G4 DNA formed upon transcription of the S regions and also binds to U.G mismatches, initial products of DNA deamination by AID. These results suggest that MutSalpha interacts with the S regions in switching B cells to promote DNA synapsis and recombination.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.