SummaryA new allele of the coronatine-insensitive locus (COI1) was isolated in a screen for Arabidopsis thaliana mutants with enhanced resistance to the bacterial pathogen Pseudomonas syringae. This mutant, designated coi1-20, exhibits robust resistance to several P. syringae isolates but remains susceptible to the virulent pathogens Erisyphe and cauli¯ower mosaic virus. Resistance to P. syringae strain PstDC3000 in coi1-20 plants is correlated with hyperactivation of PR-1 expression and accumulation of elevated levels of salicylic acid (SA) following infection, suggesting that the SA-mediated defense response pathway is sensitized in this mutant. Restriction of growth of PstDC3000 in coi1-20 leaves is partially dependent on NPR1 and fully dependent on SA, indicating that SA-mediated defenses are required for restriction of PstDC3000 growth in coi1-20 plants. Surprisingly, despite high levels of PstDC3000 growth in coi1-20 plants carrying the salicylate hydroxylase (nahG) transgene, these plants do not exhibit disease symptoms. Thus resistance to P. syringae in coi1-20 plants is conferred by two different mechanisms: (i) restriction of pathogen growth via activation of the SA-dependent defense pathway; and (ii) an SA-independent inability to develop disease symptoms. These ®ndings are consistent with the hypotheses that the P. syringae phytotoxin coronatine acts to promote virulence by inhibiting host defense responses and by promoting lesion formation.
We describe the isolation and characterization of two missense mutations in the cytosine-DNA-methyl-transferase gene, MET1, from the flowering plant Arabidopsis thaliana. Both missense mutations, which affect the catalytic domain of the protein, led to a global reduction of cytosine methylation throughout the genome. Surprisingly, the met1-2 allele, with the weaker DNA hypomethylation phenotype, alters a well-conserved residue in methyltransferase signature motif I. The stronger met1-1 allele caused late flowering and a heterochronic delay in the juvenile-to-adult rosette leaf transition. The distribution of late-flowering phenotypes in a mapping population segregating met1-1 indicates that the flowering-time phenotype is caused by the accumulation of inherited defects at loci unlinked to the met1 mutation. The delay in flowering time is due in part to the formation and inheritance of hypomethylated fwa epialleles, but inherited defects at other loci are likely to contribute as well. Centromeric repeat arrays hypomethylated in met1-1 mutants are partially remethylated when introduced into a wild-type background, in contrast to genomic sequences hypomethylated in ddm1 mutants. ddm1 met1 double mutants were constructed to further our understanding of the mechanism of DDM1 action and the interaction between two major genetic loci affecting global cytosine methylation levels in Arabidopsis.
In resistant plants, pathogen attack often leads to rapid activation of defense responses that limit multiplication and spread of the pathogen. To investigate the signaling mechanisms underlying this process, we carried out a screen for mutants in the signaling pathway governing resistance in Arabidopsis thaliana to the bacterial pathogen Pseudomonas syringae. This involved screening for suppressor mutations that restored resistance to a susceptible line carrying a mutation in the RPS2 resistance gene. A mutant that conferred resistance by activating defense responses in the absence of pathogens was isolated. This mutant, which carries a mutation at the CPR5 locus and was thus designated cpr5-2, exhibited resistance to P. syringae, spontaneous development of necrotic lesions, elevated PR gene expression in the absence of pathogens, and abnormal trichomes. Resistance gene-mediated defenses, including the hypersensitive response, restriction of pathogen growth, and induction of defense-related gene expression, were functional in cpr5-2 mutant plants. Additionally, in cpr5-2 plants RPS2-mediated induction of PR-1 expression was enhanced, whereas RPM1-mediated induction of ELI3 was not. These findings suggest that CPR5 encodes a negative regulator of the RPS2 signal transduc-tion pathway.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.