To extend our understanding of the genetic basis of human immune function and dysfunction, we performed an expression quantitative trait locus (eQTL) study of purified CD4+ T cells and monocytes, representing adaptive and innate immunity, in a multi-ethnic cohort of 461 healthy individuals. Context-specific cis- and trans-eQTLs were identified, and cross-population mapping allowed, in some cases, putative functional assignment of candidate causal regulatory variants for disease-associated loci. We note an over-representation of T cell–specific eQTLs among susceptibility alleles for autoimmune diseases and of monocyte-specific eQTLs among Alzheimer’s and Parkinson’s disease variants. This polarization implicates specific immune cell types in these diseases and points to the need to identify the cell-autonomous effects of disease susceptibility variants.
In our functional dissection of the CD33 Alzheimer’s disease susceptibility locus, we find that the rs3865444C risk allele is associated with greater cell surface expression of CD33 in monocytes (t50 = 10.06, pjoint=1.3×10–13) of young and older individuals. It is also associated with (1) diminished internalization of Aβ42) (2) accumulation of neuritic amyloid pathology and fibrillar amyloid on in vivo imaging and (3), increased numbers of activated human microglia.
Neural circuits that determine the perception and modulation of pain remain poorly understood. The prefrontal cortex (PFC) provides top-down control of sensory and affective processes. While animal and human imaging studies have shown that the PFC is involved in pain regulation, its exact role in pain states remains incompletely understood. A key output target for the PFC is the nucleus accumbens (NAc), an important component of the reward circuitry. Interestingly, recent human imaging studies suggest that the projection from the PFC to the NAc is altered in chronic pain. The function of this corticostriatal projection in pain states, however, is not known. Here we show that optogenetic activation of the PFC produces strong antinociceptive effects in a rat model (spared nerve injury model) of persistent neuropathic pain. PFC activation also reduces the affective symptoms of pain. Furthermore, we show that this pain-relieving function of the PFC is likely mediated by projections to the NAc. Thus, our results support a novel role for corticostriatal circuitry in pain regulation.
Currently, no blood biomarker that specifically indicates injury to the proximal tubule of the kidney has been identified. Kidney injury molecule-1 (KIM-1) is highly upregulated in proximal tubular cells following kidney injury. The ectodomain of KIM-1 is shed into the lumen, and serves as a urinary biomarker of kidney injury. We report that shed KIM-1 also serves as a blood biomarker of kidney injury. Sensitive assays to measure plasma and serum KIM-1 in mice, rats, and humans were developed and validated in the current study. Plasma KIM-1 levels increased with increasing periods of ischemia (10, 20, or 30 minutes) in mice, as early as 3 hours after reperfusion; after unilateral ureteral obstruction (day 7) in mice; and after gentamicin treatment (50 or 200 mg/kg for 10 days) in rats. In humans, plasma KIM-1 levels were higher in patients with AKI than in healthy controls or post-cardiac surgery patients without AKI (area under the curve, 0.96). In patients undergoing cardiopulmonary bypass, plasma KIM-1 levels increased within 2 days after surgery only in patients who developed AKI (P,0.01). Blood KIM-1 levels were also elevated in patients with CKD of varous etiologies. In a cohort of patients with type 1 diabetes and proteinuria, serum KIM-1 level at baseline strongly predicted rate of eGFR loss and risk of ESRD during 5-15 years of follow-up, after adjustment for baseline urinary albuminto-creatinine ratio, eGFR, and Hb1Ac. These results identify KIM-1 as a blood biomarker that specifically reflects acute and chronic kidney injury.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.