The polypyrimidine tract binding protein (PTB) has been described as a global repressor of regulated exons. To investigate PTB functions in a physiological context, we used a combination of morpholino-mediated knockdown and transgenic overexpression strategies in Xenopus laevis embryos. We show that embryonic endoderm and skin deficient in PTB displayed a switch of the alpha-tropomyosin pre-mRNA 3' end processing to the somite-specific pattern that results from the utilization of an upstream 3'-terminal exon designed exon 9A9'. Conversely, somitic targeted overexpression of PTB resulted in the repression of the somite-specific exon 9A9' and a switch towards the nonmuscle pattern. These results validate PTB as a key physiological regulator of the 3' end processing of the alpha-tropomyosin pre-mRNA. Moreover, using a minigene strategy in the Xenopus oocyte, we show that in addition to repressing the splicing of exon 9A9', PTB regulates the cleavage/polyadenylation of this 3'-terminal exon.
Background information. mRNA deadenylation [shortening of the poly(A) tail] is often triggered by specific sequence elements present within mRNA 3 untranslated regions and generally causes rapid degradation of the mRNA. In vertebrates, many of these deadenylation elements are called AREs (AU-rich elements). The EDEN (embryo deadenylation element) sequence is a Xenopus class III ARE. EDEN acts by binding a specific factor, EDEN-BP (EDEN-binding protein), which in turn stimulates deadenylation.Results. We show here that EDEN-BP is able to oligomerize. A 27-amino-acid region of EDEN-BP was identified as a key domain for oligomerization. A mutant of EDEN-BP lacking this region was unable to oligomerize, and a peptide corresponding to this region competitively inhibited the oligomerization of full-length EDEN-BP. Impairing oligomerization by either of these two methods specifically abolished EDEN-dependent deadenylation. Furthermore, impairing oligomerization inhibited the binding of EDEN-BP to its target RNA, demonstrating a strong coupling between EDEN-BP oligomerization and RNA binding.Conclusions. These data, showing that the oligomerization of EDEN-BP is required for binding of the protein on its target RNA and for EDEN-dependent deadenylation in Xenopus embryos, will be important for the identification of cofactors required for the deadenylation process.
An increasing number of genes are being identified for which the corresponding mRNAs contain different combinations of the encoded exons. This highly regulated exon choice, or alternative splicing, is often tissue-specific and potentially could differentially affect cellular functions. Alternative splicing is therefore not only a means to increase the coding capacity of the genome, but also to regulate gene expression during differentiation or development. To both evaluate the importance for cellular functions and define the regulatory pathways of alternative splicing, it is necessary to progress from the in vitro or ex vivo experimental models actually used towards in vivo whole-animal studies. We present here the amphibian, Xenopus, as an experimental model highly amenable for such studies. The various experimental approaches that can be used with Xenopus oocytes and embryos to characterize regulatory sequence elements and factors are presented and the advantages and drawbacks of these approaches are discussed. Finally, the real possibilities for large-scale identification of mRNAs containing alternatively spliced exons, the tissue-specific patterns of exon usage and the way in which these patterns are modified by perturbing the relative amount of splicing factors are discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.