We have developed a pump-probe microscope capable of exciting a single semiconductor nanostructure in one location and probing it in another with both high spatial and temporal resolution. Experiments performed on Si nanowires enable a direct visualization of the charge cloud produced by photoexcitation at a localized spot as it spreads along the nanowire axis. The time-resolved images show clear evidence of rapid diffusional spreading and recombination of the free carriers, which is consistent with ambipolar diffusion and a surface recombination velocity of ∼10(4) cm/s. The free carrier dynamics are followed by trap carrier migration on slower time scales.
BackgroundShort-course antiretroviral therapy (ART) in primary human immunodeficiency virus (HIV) infection may delay disease progression but has not been adequately evaluated. MethodsWe randomly assigned adults with primary HIV infection to ART for 48 weeks, ART for 12 weeks, or no ART (standard of care), with treatment initiated within 6 months after seroconversion. The primary end point was a CD4+ count of less than 350 cells per cubic millimeter or long-term ART initiation. ResultsA total of 366 participants (60% men) underwent randomization to 48-week ART (123 participants), 12-week ART (120), or standard care (123), with an average followup of 4.2 years. The primary end point was reached in 50% of the 48-week ART group, as compared with 61% in each of the 12-week ART and standard-care groups. The average hazard ratio was 0.63 (95% confidence interval [CI], 0.45 to 0.90; P = 0.01) for 48-week ART as compared with standard care and was 0.93 (95% CI, 0.67 to 1.29; P = 0.67) for 12-week ART as compared with standard care. The proportion of participants who had a CD4+ count of less than 350 cells per cubic millimeter was 28% in the 48-week ART group, 40% in the 12-week group, and 40% in the standard-care group. Corresponding values for long-term ART initiation were 22%, 21%, and 22%. The median time to the primary end point was 65 weeks (95% CI, 17 to 114) longer with 48-week ART than with standard care. Post hoc analysis identified a trend toward a greater interval between ART initiation and the primary end point the closer that ART was initiated to estimated seroconversion (P = 0.09), and 48-week ART conferred a reduction in the HIV RNA level of 0.44 log 10 copies per milliliter (95% CI, 0.25 to 0.64) 36 weeks after the completion of short-course therapy. There were no significant between-group differences in the incidence of the acquired immunodeficiency syndrome, death, or serious adverse events. ConclusionsA 48-week course of ART in patients with primary HIV infection delayed disease progression, although not significantly longer than the duration of the treatment. There was no evidence of adverse effects of ART interruption on the clinical outcome. (Funded by the Wellcome Trust; SPARTAC Controlled-Trials.com number, ISRCTN76742797, and EudraCT number, 2004-000446-20.)The Copyright © 2013 Massachusetts Medical Society. All rights reserved.T h e n e w e ng l a n d j o u r na l o f m e dic i n e n engl j med 368;3 nejm.org january 17, 2013 208A lthough the use of highly active antiretroviral therapy (ART) in human immunodeficiency virus (HIV) disease reduces morbidity and mortality, 1-3 the role of ART in the management of primary HIV infection remains controversial. [4][5][6] Immunologic damage after HIV acquisition occurs rapidly and is not wholly reversible by later ART. 7-9 Observational studies have suggested that a short course of ART during primary HIV infection may preserve immune function, 10,11 decrease viral evolution, 12 and limit the viral reservoir. [13][14][15] Two randomized, controlled trial...
Ultrafast charge carrier dynamics in silicon nanowires (NWs) grown by a vapor−liquid−solid mechanism were interrogated with optical pump−probe microscopy. The high time and spatial resolutions achieved by the experiments provide insight into the charge carrier dynamics of single nanostructures. Individual NWs were excited by a femtosecond pump pulse focused to a diffraction-limited spot, producing photogenerated carriers (electrons and holes) in a localized region of the structure. Photoexcited carriers undergo both electron−hole recombination and diffusional migration away from the excitation spot on similar time scales. The evolution of the carrier population is monitored by a delayed probe pulse that is also focused to a diffraction-limited spot. When the pump and probe are spatially overlapped, the transient signal reflects both recombination and carrier migration. Diffusional motion is directly observed by spatially separating the pump and probe beams, enabling carriers to be generated in one location and detected in another. Quantitative analysis of the signals yields a statistical distribution of carrier lifetimes from a large number of individual NWs. On average, the lifetime was found to be linearly proportional to the diameter, consistent with a surface-mediated recombination mechanism. These results highlight the capability of pump−probe microscopy to quantitatively evaluate key recombination characteristics in semiconductor nanostructures, which are important for their implementation in nanotechnologies.
Strain-induced changes to the electronic structure of nanoscale materials provide a promising avenue for expanding the optoelectronic functionality of semiconductor nanostructures in device applications. Here we use pump-probe microscopy with femtosecond temporal resolution and submicron spatial resolution to characterize charge-carrier recombination and transport dynamics in silicon nanowires (NWs) locally strained by bending deformation. The electron-hole recombination rate increases with strain for values above a threshold of ∼1% and, in highly strained (∼5%) regions of the NW, increases 6-fold. The changes in recombination rate are independent of NW diameter and reversible upon reduction of the applied strain, indicating the effect originates from alterations to the NW bulk electronic structure rather than introduction of defects. The results highlight the strong relationship between strain, electronic structure, and charge-carrier dynamics in low-dimensional semiconductor systems, and we anticipate the results will assist the development of strain-enabled optoelectronic devices with indirect-bandgap materials such as silicon.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.