Over 2 percent of Ashkenazi Jews carry mutations in BRCA1 or BRCA2 that confer increased risks of breast, ovarian, and prostate cancer. The risks of breast cancer may be overestimated, but they fall well below previous estimates based on subjects from high-risk families.
The mammalian host specifically limits iron during Histoplasma capsulatum infection, and fungal acquisition of iron is essential for productive infection. H. capsulatum expresses several iron acquisition mechanisms under iron-limited conditions in vitro. These components include hydroxamate siderophores, extracellular glutathione-dependent ferric reductase enzyme, extracellular nonproteinaceous ferric reductant(s), and cell surface ferric reducing agent(s). We examined the relationship between these mechanisms and a potential role for the extracellular ferric reductase in utilization of environmental and host ferric compounds through the production of free, soluble Fe(II). Siderophores and ferric reducing agents were coproduced under conditions of iron limitation. The H. capsulatum siderophore dimerum acid and the structurally similar basidiomycete siderophore rhodotorulic acid acted as substrates for the ferric reductase, and rhodotorulic acid removed Fe(III) bound by transferrin. The mammalian Fe(III)-binding compounds hemin and transferrin served both as substrates for the ferric reductase and as iron sources for yeast-phase growth at neutral pH. In the case of transferrin, there was a correlation between the level of iron saturation and efficacy for both of these functions. Our data are not consistent with an entirely pH-dependent mechanism of iron acquisition from transferrin, as has been suggested to occur in the macrophage phagolysosome. The foreign siderophore ferrioxamine B also acted as a substrate for the ferric reductase, while the foreign siderophore ferrichrome did not. Both ferrioxamine and ferrichrome served as iron sources for yeast-and mold-phase growth, the latter presumably by some other acquisition mechanism(s).
For the fungus Histoplasma capsulatum, and for other microbial pathogens, iron is an essential nutrient. Iron sequestration in response to infection is a demonstrated host defense mechanism; thus, iron acquisition may be considered an important pathogenic determinant. H. capsulatum is known to secrete Fe(III)-binding hydroxamate siderophores, which is one common microbial process for acquiring iron. Here, we report H. capsulatumferric reduction activities in whole yeast cells and in both high- and low-molecular-weight fractions of culture supernatants. Each of these activities was induced or derepressed by growth under iron-limiting conditions, a phenomenon often associated with specific iron acquisition mechanisms. The high-molecular-weight culture supernatant activity was enhanced by the addition of reduced glutathione, was proteinase K sensitive and heat labile, and could utilize ferric chloride, ferric citrate, and human holotransferrin as substrates. The low-molecular-weight culture supernatant activity was resistant to proteinase K digestion. These results are consistent with the expression by H. capsulatum of both enzymatic ferric reductase and nonproteinaceous ferric reductant, both of which are regulated by iron availability. Such components could be involved in fungal acquisition of iron from inorganic or organic ferric salts, fromH. capsulatum hydroxamate siderophores, or from host Fe(III)-binding proteins, such as transferrin.
SummaryWe have studied gonococcal infection in human endometrium organ culture and in human primary endometrial epithelial cells using various microscopic techniques including scanning electron microscopy, transmission electron microscopy, bright field light microscopy and laser scanning confocal microscopy. Here we describe the interactions between Neisseria gonorrhoeae and human endometrial luminal epithelial cells at the ultrastructural levels. N. gonorrhoeae attached to cilia but were not observed associated with the plasma membrane of ciliated epithelial cells or internalized into ciliated epithelial cells. N. gonorrhoeae could be found in intracellular vacuoles in secretory epithelial cells. N. gonorrhoeae have diverse interactions with endometrial epithelium. These include intimate association and colocalization with asialoglycoprotein receptor (ASGP-R) and CEACAM, lamellipodia and ruffle formation and colocalization with CR3, and microvillus engagement. These studies indicate that N. gonorrhoeae utilize multiple mechanisms to associate with endometrial epithelial cells and can associate with both ciliated and secretory cells. This diversity is consistent with a role of the endometrium as a transition zone between frequently asymptomatic cervical gonorrhoea and symptomatic pelvic inflammatory disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.