The biological role of selenium is a subject of intense current interest, and the antioxidant activity of selenoenzymes is now known to be dependent upon redox cycling of selenium within their active sites. Exogenously supplied or metabolically generated organoselenium compounds, capable of propagating a selenium redox cycle, might therefore supplement natural cellular defenses against the oxidizing agents generated during metabolism. We now report evidence that selenium redox cycling can enhance the protective effects of organoselenium compounds against oxidant-induced DNA damage. Phenylaminoethyl selenides were found to protect plasmid DNA from peroxynitrite-mediated damage by scavenging this powerful cellular oxidant and forming phenylaminoethyl selenoxides as the sole selenium-containing products. The redox properties of these organoselenoxide compounds were investigated, and the first redox potentials of selenoxides in the literature are reported here. Rate constants were determined for the reactions of the selenoxides with cellular reductants such as glutathione (GSH). These kinetic data were then used in a MatLab simulation, which showed the feasibility of selenium redox cycling by GSH in the presence of the cellular oxidant, peroxynitrite. Experiments were then carried out in which peroxynitrite-mediated plasmid DNA nick formation in the presence or absence of organoselenium compounds and GSH was monitored. The results demonstrate that GSH-mediated redox cycling of selenium enhances the protective effects of phenylaminoethyl selenides against peroxynitrite-induced DNA damage.
A method for speciation and identification of organoselenium metabolites found in human urine samples using high performance liquid chromatography/inductively coupled plasma mass spectrometry (HPLC/ICP-MS) and tandem mass spectrometry (MS/MS) is described. Reversed-phase chromatographic separation was used for sample fractionation with the ICP-MS functioning as an element-selective detector, and six distinct selenium-containing species were detected in a human urine sample. Fractions were then collected and analyzed using a triple quadrupole mass spectrometer with electrospray ionization and collision-induced dissociation to obtain structural information. The first two fractions were identified specifically as selenomethionine and selenocystamine, estimated to be present at approximately 11 and 40 ppb, respectively. To the best of our knowledge, this is the first time these two metabolites have been positively identified in human urine.
Postcolumn addition is an effective means of alleviating or solving ionization-related problems in liquid chromatography/electrospray ionization mass spectrometry (LC/ESIMS). In the current study, initial attempts to develop a direct LC/ESIMS method for an organoselenium compound, 4-hydroxyphenyl 2-methyl-2-aminoethyl selenide (HOMePAESe), were unsuccessful because of extensive fragmentation which occurred even under the mildest in-source collision-induced dissociation (CID) conditions. To reduce the extent of compound fragmentation, a crown ether, 18-crown-6, was added postcolumn to the system, forming a complex with HOMePAESe, which survived the electrospray ionization process with reduced fragmentation and hence improved sensitivity for the major ions. The general applicability of this crown ether complexation approach to clinical samples was demonstrated by the analysis of HOMePAESe in human urine, using a structural analogue, 4-fluorophenyl 2-aminoethyl selenide (FPAESe) as an internal standard. The limit of detection for HOMePAESe, based on a signal-to-noise ratio of 3:1, was estimated to be 5 pg/microL in urine. The potential application of this approach to the general analysis of other amine-containing compounds was also evaluated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.