Cholesterol 7α-hydroxylase (CYP7A1) is the rate-limiting enzyme in the bile acid biosynthetic pathway that converts cholesterol into bile acids in the liver. Recent studies have shown that bile acids may play an important role in maintaining lipid, glucose, and energy homeostasis. However, the role of CYP7A1 in the development of obesity and diabetes is currently unclear. In this study, we demonstrated that transgenic mice overexpressing Cyp7a1 in the liver [i.e., Cyp7a1 transgenic (Cyp7a1-tg) mice] were resistant to high-fat diet (HFD)–induced obesity, fatty liver, and insulin resistance. Cyp7a1-tg mice showed increased hepatic cholesterol catabolism and an increased bile acid pool. Cyp7a1-tg mice had increased secretion of hepatic very low density lipoprotein but maintained plasma triglyceride homeostasis. Gene expression analysis showed that the hepatic messenger RNA expression levels of several critical lipogenic and gluconeogenic genes were significantly decreased in HFD-fed Cyp7a1-tg mice. HFD-fed Cyp7a1-tg mice had increased whole body energy expenditure and induction of fatty acid oxidation genes in the brown adipose tissue. Conclusion This study shows that Cyp7a1 plays a critical role in maintaining whole body lipid, glucose, and energy homeostasis. The induction of CYP7A1 expression with the expansion of the hydrophobic bile acid pool may be a potential therapeutic strategy for treating metabolic disorders such as fatty liver diseases, obesity, and diabetes in humans.
We reported previously that mice overexpressing cytochrome P450 7a1 (Cyp7a1; Cyp7a1-tg mice) are protected against high fat diet-induced hypercholesterolemia, obesity, and insulin resistance. Here, we investigated the underlying mechanism of bile acid signaling in maintaining cholesterol homeostasis in Cyp7a1-tg mice. Cyp7a1-tg mice had two-fold higher Cyp7a1 activity and bile acid pool than did wild-type mice. Gallbladder bile acid composition changed from predominantly cholic acid (57%) in wild-type to chenodeoxycholic acid (54%) in Cyp7a1-tg mice. Cyp7a1-tg mice had higher biliary and fecal cholesterol and bile acid secretion rates than did wild-type mice. Surprisingly, hepatic de novo cholesterol synthesis was markedly induced in Cyp7a1-tg mice but intestine fractional cholesterol absorption in Cyp7a1-tg mice remained the same as wild-type mice despite the presence of increased intestine bile acids. Interestingly, hepatic but not intestinal expression of several cholesterol (adenosine triphosphatebinding cassette G5/G8 [ABCG5/G8], scavenger receptor class B, member 1) and bile acid (ABCB11) transporters were significantly induced in Cyp7a1-tg mice. Treatment of mouse or human hepatocytes with a farnesoid X receptor (FXR) agonist GW4064 or bile acids induced hepatic Abcg5/g8 expression. A functional FXR binding site was identified in the Abcg5 gene promoter. Study of tissue-specific Fxr knockout mice demonstrated that loss of the Fxr gene in the liver attenuated bile acid induction of hepatic Abcg5/g8 and gallbladder cholesterol content, suggesting a role of FXR in the regulation of cholesterol transport. Conclusion: This study revealed a new mechanism by which increased Cyp7a1 activity expands the hydrophobic bile acid pool, stimulating hepatic cholesterol synthesis and biliary cholesterol secretion without increasing intestinal cholesterol absorption. This study demonstrated that Cyp7a1 plays a critical role in maintaining cholesterol homeostasis and underscores the importance of bile acid signaling in regulating overall cholesterol homeostasis. (HEPATOLOGY 2011;53:996-1006)
Bile acid‐activated FXR plays a key role in lipid, glucose, drug and energy metabolism. Cholesterol 7á‐hydroxylase (CYP7A1) catalyzes the rate‐limiting step in the conversion of cholesterol into bile acids in the liver. The mechanism of bile acid‐mediated regulation of glucose and lipid metabolism remains unclear. The objective of this study is to investigate the role of CYP7A1 in the prevention of fatty liver, obesity and diabetes. Transgenic mice carrying an ApoE3‐CYP7A1 coding sequence (Cyp7a1‐tg) were used to study high fat diet (HFD) induced obesity, fatty liver, and insulin resistance. Cyp7a1‐tg mice had a ~ 3‐fold higher bile acid pool size than wild type mice. When fed a HFD, Cyp7a1‐tg mice were resistant to weight gain, fatty liver and insulin resistance, and had decreased fat mass and hepatic triglycerides and cholesterol content than wild type mice. Cyp7a1‐tg mice showed increased hepatic VLDL secretion but maintained plasma triglyceride and cholesterol homeostasis. Indirect calorimetry revealed that HFD fed Cyp7a1‐tg mice had increased energy expenditure and higher respiratory quotient than wild type mice. This study suggests that maintaining bile acid homeostasis is important in regulating whole body lipid, glucose and energy homeostasis. Bile acids and derivative may be potential therapeutic agents for treating metabolic disorders such as fatty liver diseases, obesity and diabetes in humans.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.