In this study, thermoresponsive copolymers that are fully injectable, biocompatible, and biodegradable and are synthesized via graft copolymerization of poly(N-isopropylacrylamide) onto alginate using a free-radical reaction are presented. This new synthesis method does not involve multisteps or associated toxicity issues, and has the potential to reduce scale-up difficulties. Chemical and physical analyses verify the resultant graft copolymer structure. The lower critical solution temperature, which is a characteristic of sol-gel transition, is observed at 32 °C. The degradation properties indicate suitable degradation kinetics for drug delivery and bone tissue engineering applications. The synthesized P(Alg-g-NIPAAm) hydrogel is noncytotoxic with both human osteosarcoma (MG63) cells and porcine bone marrow derived mesenchymal stem cells (pBMSCs). pBMSCs encapsulated in the P(Alg-g-NIPAAm) hydrogel remain viable, show uniform distribution within the injected hydrogel, and undergo osteogenic and chondrogenic differentiation under appropriate culture conditions. Furthermore, for the first time, this work will explore the influence of alginate viscosity on the viscoelastic properties of the resulting copolymer hydrogels, which influences the rate of medical device formation and subsequent drug release. Together the results of this study indicate that the newly synthesized P(Alg-g-NIPAAm) hydrogel has potential to serve as a versatile and improved injectable platform for drug delivery and bone tissue engineering applications.
Ischaemia-related diseases such as peripheral artery disease and coronary heart disease constitute a major issue in medicine as they affect millions of individuals each year and represent a considerable economic burden to healthcare systems. If the underlying ischaemia is not sufficiently resolved it can lead to tissue damage, with subsequent cell death. Treating such diseases remains difficult and several strategies have been used to stimulate the growth of blood vessels and promote regeneration of ischaemic tissues, such as the use of recombinant proteins and gene therapy. Although these approaches remain promising, they have limitations and results from clinical trials using these methods have had limited success. Recently, there has been growing interest in the therapeutic potential of using a cell-based approach to treat vasodegenerative disorders. In vascular medicine, various stem cells and adult progenitors have been highlighted as having a vasoreparative role in ischaemic tissues. This review will examine the clinical potential of several stem and progenitor cells that may be utilised to regenerate defunct or damaged vasculature and restore blood flow to the ischaemic tissue. In particular, we focus on the therapeutic potential of endothelial progenitor cells as an exciting new option for the treatment of ischaemic diseases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.