Peptidylarginine deiminases (PADs) play a critical role in generating autoantigens in rheumatoid arthritis (RA), but the mechanisms underlying their dysregulation in this disease remain unknown. Although PADs require supraphysiologic concentrations of calcium for activity in vitro, the enzymes are clearly active in vivo (e.g. in RA synovial fluid) where calcium concentrations are much lower. In this study, we have discovered a novel subset of anti-PAD4 autoantibodies (identified by their cross-reactivity with PAD3) which strikingly increase the catalytic efficiency of PAD4 by decreasing the enzyme’s requirement for calcium into the physiologic range. Patients with these novel PAD3/PAD4 cross-reactive autoantibodies had higher baseline radiographic damage scores and a higher likelihood of radiographic progression compared to individuals negative for these antibodies. The ability of autoantibodies to activate an enzyme that itself generates citrullinated autoantigens identifies an important feed-forward loop which may drive the erosive outcome observed in RA patients with these autoantibodies. PAD3 autoantibodies may therefore identify RA patients who would benefit from early aggressive treatment or addition of PAD-inhibitor therapy.
Summary Dendritic cells (DCs) initiate and control the adaptive immune response against infections. However, their contributions to the anti-self adaptive immune response in autoimmune disorders like systemic lupus erythematosus are uncertain. By constitutively deleting DCs in MRL.Faslpr mice we show that they have complex roles in murine lupus. The net effect of DC deletion was to ameliorate disease. DCs were crucial for the expansion and differentiation of T cells but, surprisingly, not required for their initial activation. Correspondingly, kidney interstitial infiltrates developed in the absence of DCs, but failed to progress. DC deletion concomitantly decreased inflammatory and regulatory T cell numbers. Unexpectedly, plasmablast numbers and autoantibody concentrations depended on DCs, in contrast to total serum immunoglobulin concentrations, suggesting an effect of DCs on extrafollicular humoral responses. These findings reveal that DCs operate in unanticipated ways in murine lupus and validate them as a potential therapeutic target in autoimmunity.
Extrafollicular (EF) B-cell responses are increasingly being recognized as an alternative pathway of B-cell activation, particularly in autoimmunity. Critical cellular interactions required for the EF Bcell response are unclear. A key question in autoimmunity, in which Toll-like receptor (TLR) signals are costimulatory and could be sufficient for B-cell activation, is whether T cells are required for the response. This is pivotal, because autoreactive B cells are considered antigen-presenting cells for autoreactive T cells, but where such interactions occur has not been identified. Here, using AM14 site-directed transgenic rheumatoid factor (RF) mice, we report that B cells can be activated, differentiate, and isotypeswitch independent of antigen-specific T-cell help, αβ T cells, CD40L signaling, and IL-21 signaling to B cells. However, T cells do dramatically enhance the response, and this occurs via CD40L and IL-21 signals. Surprisingly, the response is completely inducible T-cell costimulator ligand independent. These results establish that, although not required, T cells substantially amplify EF autoantibody production and thereby implicate T-independent autoreactive B cells as a potential vector for breaking T-cell tolerance. We suggest that these findings explain why autoreactivity first focuses on self-components for which B cells carry TLR ligands, because these will uniquely be able to activate B cells independently of T cells, with subsequent T-B interactions activating autoreactive T cells, resulting in chronic autoimmunity.systemic lupus | autoantibodies
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.