The pathogenesis of Pseudomonas aeruginosa disseminated infections depends on bacterial interaction with blood vessels. We have hypothesized that in order to traverse the endothelial barrier, bacteria would have to adhere to and damage endothelial cells. To test this hypothesis, we studied the adherence to human endothelial cells in primary culture of the piliated P. aeruginosa strain PAK and of two isogenic nonpiliated strains: PAK/p-, which carries a mutation in the pilin structural gene, and PAK-Nl, a mutant defective in the regulatory rpoN gene. PAK adhered significantly more than did the pilus-lacking strains. P. aeruginosa was also taken up by endothelial cells, as determined by quantitative bacteriologic assays and by transmission electron microscopy. This internalization of P. aeruginosa seems to be a selective process, since the piliated strain was taken up significantly more than the nonpiliated bacteria and the avirulent Escherichia coli DH5a, even following bacterial centrifugation onto the cell monolayers. A significant fraction of the internalized P. aeruginosa PAK was recovered in a viable form after 6 h of residence within endothelial cells. Progressive endothelial cell damage resulted from PAK intracellular harboring, as indicated by the release of lactate dehydrogenase. An increasing concentration of PAK cells was recovered from the extracellular medium with
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.