Electronic health record (EHR) log data have shown promise in measuring physician time spent on clinical activities, contributing to deeper understanding and further optimization of the clinical environment. In this article, we propose 7 core measures of EHR use that reflect multiple dimensions of practice efficiency: total EHR time, work outside of work, time on documentation, time on prescriptions, inbox time, teamwork for orders, and an aspirational measure for the amount of undivided attention patients receive from their physicians during an encounter, undivided attention. We also illustrate sample use cases for these measures for multiple stakeholders. Finally, standardization of EHR log data measure specifications, as outlined here, will foster cross-study synthesis and comparative research.
Objective To systematically review published literature and identify consistency and variation in the aims, measures, and methods of studies using electronic health record (EHR) audit logs to observe clinical activities. Materials and Methods In July 2019, we searched PubMed for articles using EHR audit logs to study clinical activities. We coded and clustered the aims, measures, and methods of each article into recurring categories. We likewise extracted and summarized the methods used to validate measures derived from audit logs and limitations discussed of using audit logs for research. Results Eighty-five articles met inclusion criteria. Study aims included examining EHR use, care team dynamics, and clinical workflows. Studies employed 6 key audit log measures: counts of actions captured by audit logs (eg, problem list viewed), counts of higher-level activities imputed by researchers (eg, chart review), activity durations, activity sequences, activity clusters, and EHR user networks. Methods used to preprocess audit logs varied, including how authors filtered extraneous actions, mapped actions to higher-level activities, and interpreted repeated actions or gaps in activity. Nineteen studies validated results (22%), but only 9 (11%) through direct observation, demonstrating varying levels of measure accuracy. Discussion While originally designed to aid access control, EHR audit logs have been used to observe diverse clinical activities. However, most studies lack sufficient discussion of measure definition, calculation, and validation to support replication, comparison, and cross-study synthesis. Conclusion EHR audit logs have potential to scale observational research but the complexity of audit log measures necessitates greater methodological transparency and validated standards.
IMPORTANCE Electronic health record (EHR) systems have transformed the practice of medicine. However, physicians have raised concerns that EHR time requirements have negatively affected their productivity. Meanwhile, evolving approaches toward physician reimbursement will require additional documentation to measure quality and cost of care. To date, little quantitative analysis has rigorously studied these topics.OBJECTIVE To examine ophthalmologist time requirements for EHR use. DESIGN, SETTING, AND PARTICIPANTSA single-center cohort study was conducted between September 1, 2013, and December 31, 2016, among 27 stable departmental ophthalmologists (defined as attending ophthalmologists who worked at the study institution for Ն6 months before and after the study period). Ophthalmologists who did not have a standard clinical practice or who did not use the EHR were excluded.EXPOSURES Time stamps from the medical record and EHR audit log were analyzed to measure the length of time required by ophthalmologists for EHR use. Ophthalmologists underwent manual time-motion observation to measure the length of time spent directly with patients on the following 3 activities: EHR use, conversation, and examination. MAIN OUTCOMES AND MEASURESThe study outcomes were time spent by ophthalmologists directly with patients on EHR use, conversation, and examination as well as total time required by ophthalmologists for EHR use. RESULTSAmong the 27 ophthalmologists in this study (10 women and 17 men; mean [SD] age, 47.3 [10.7] years [median, 44; range, 34-73 years]) the mean (SD) total ophthalmologist examination time was 11.2 (6.3) minutes per patient, of which 3.0 (1.8) minutes (27% of the examination time) were spent on EHR use, 4.7 (4.2) minutes (42%) on conversation, and 3.5 (2.3) minutes (31%) on examination. Mean (SD) total ophthalmologist time spent using the EHR was 10.8 (5.0) minutes per encounter (range, 5.8-28.6 minutes). The typical ophthalmologist spent 3.7 hours using the EHR for a full day of clinic: 2.1 hours during examinations and 1.6 hours outside the clinic session. Linear mixed effects models showed a positive association between EHR use and billing level and a negative association between EHR use per encounter and clinic volume. Each additional encounter per clinic was associated with a decrease of 1.7 minutes (95% CI, -4.3 to 1.0) of EHR use time per encounter for ophthalmologists with high mean billing levels (adjusted R 2 = 0.42; P = .01). CONCLUSIONS AND RELEVANCEOphthalmologists have limited time with patients during office visits, and EHR use requires a substantial portion of that time. There is variability in EHR use patterns among ophthalmologists.
Widespread adoption of electronic health records (EHRs) has resulted in the collection of massive amounts of clinical data. In ophthalmology in particular, the volume range of data captured in EHR systems has been growing rapidly. Yet making effective secondary use of this EHR data for improving patient care and facilitating clinical decision-making has remained challenging due to the complexity and heterogeneity of these data. Artificial intelligence (AI) techniques present a promising way to analyze these multimodal data sets. While AI techniques have been extensively applied to imaging data, there are a limited number of studies employing AI techniques with clinical data from the EHR. The objective of this review is to provide an overview of different AI methods applied to EHR data in the field of ophthalmology. This literature review highlights that the secondary use of EHR data has focused on glaucoma, diabetic retinopathy, age-related macular degeneration, and cataracts with the use of AI techniques. These techniques have been used to improve ocular disease diagnosis, risk assessment, and progression prediction. Techniques such as supervised machine learning, deep learning, and natural language processing were most commonly used in the articles reviewed.
Objective Outpatient clinics lack guidance for tackling modern efficiency and productivity demands. Workflow studies require large amounts of timing data that are prohibitively expensive to collect through observation or tracking devices. Electronic health records (EHRs) contain a vast amount of timing data – timestamps collected during regular use – that can be mapped to workflow steps. This study validates using EHR timestamp data to predict outpatient ophthalmology clinic workflow timings at Oregon Health and Science University and demonstrates their usefulness in 3 different studies. Materials and Methods Four outpatient ophthalmology clinics were observed to determine their workflows and to time each workflow step. EHR timestamps were mapped to the workflow steps and validated against the observed timings. Results The EHR timestamp analysis produced times that were within 3 min of the observed times for >80% of the appointments. EHR use patterns affected the accuracy of using EHR timestamps to predict workflow times. Discussion EHR timestamps provided a reasonable approximation of workflow and can be used for workflow studies. They can be used to create simulation models, analyze EHR use, and quantify the impact of trainees on workflow. Conclusion The secondary use of EHR timestamp data is a valuable resource for clinical workflow studies. Sample timestamp data files and algorithms for processing them are provided and can be used as a template for more studies in other clinical specialties and settings.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.