Objective:The relationship between genetic variation in the T-type calcium channel gene CACNA1H and childhood absence epilepsy is well established. The purpose of this study was to investigate the range of epilepsy syndromes for which CACNA1H variants may contribute to the genetic susceptibility architecture and determine the electrophysiological effects of these variants in relation to proposed mechanisms underlying seizures. Methods: Exons 3 to 35 of CACNA1H were screened for variants in 240 epilepsy patients (167 unrelated) and 95 control subjects by single-stranded conformation analysis followed by direct sequencing. Cascade testing of families was done by sequencing or single-stranded conformation analysis. Selected variants were introduced into the CACNA1H protein by sitedirected mutagenesis. Constructs were transiently transfected into human embryo kidney cells, and electrophysiological data were acquired.
K-Ras dependent non-small cell lung cancer (NSCLC) cells are ‘addicted’ to basal autophagy that reprograms cellular metabolism in a lysosomal-sensitive manner. Here we demonstrate that the xenophagy-associated kinase TBK1 drives basal autophagy, consistent with its known requirement in K-Ras-dependent NSCLC proliferation. Furthermore, basal autophagy in this context is characterised by sequestration of the xenophagy cargo receptor Ndp52 and its paralogue Tax1bp1, which we demonstrate here to be a bona fide cargo receptor. Autophagy of these cargo receptors promotes non-canonical NF-κB signalling. We propose that this TBK1-dependent mechanism for NF-κB signalling contributes to autophagy addiction in K-Ras driven NSCLC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.