Climate change and a growing global population pose ongoing threats to critical resources. As resources required by the agriculture sector continue to diminish, it is critical to leverage the emerging technologies and new solutions within the sector. New cultivation practices have emerged over the years, allowing food to be grown within urban areas. Greenhouses are versatile in the resources needed for their operation, as well as the foods that can be grown. While greenhouses provide a potential for a more constant food supply, there is a lack of optimization between the components. There are benefits to having modular components of a greenhouse, allowing for adjustments or repairs to singular pieces. However, there is inefficiency in the entire system, since each component functions without considering the others. To improve greenhouse efficiency, a closed-loop system can be introduced. A greenhouse is a closed system, and by repurposing, reusing, and recirculating resources, a greenhouse can evolve to have a closed-loop system. This enables the components of a system to share resources more effectively, communicate any systems changes that are required, and minimize waste outputs. This research explores the current technology in the space of agriculture and computer science to create a fully closed-loop system. The most noticeable system components are food waste, nutrient systems, water systems, growing media, and heating and energy. Not all components within a greenhouse can leverage the same artificial intelligence methods and techniques based on existing findings. There are methods in place that allow the components to interpret data gathered from the greenhouse and alter its operational patterns. There remains a lack in communicating this information to other aspects of the system to have it make informed data-driven decisions as well. One can optimize singular components thereby reducing resource reliance, to a certain threshold until it impacts the plant’s development and yield. When all the systems components’ resource needs and outputs converge the functionality of the system can be optimized to utilize resources at a higher efficiency. Results are indicative of very siloed and isolated research, exploring closed-loop systems within greenhouses, but not leveraging its full capabilities.
A growing global population and climate change threaten the availability of many critical resources, and they are directly impacting the food and agriculture sector. Therefore, new cultivation technologies must be rapidly adopted and implemented to secure the world’s food needs. Closed-loop greenhouse agriculture systems provide an opportunity to decrease resource reliance and increase crop yield. Greenhouses provide versatility in what can be grown and the resources required to function. Greenhouses can become highly efficient and resilient through the application of a closed-loop systems approach that prioritizes repurposing, reusing, and recirculating resources. Here, we employ a text mining approach to research the available research (meta-research) and publications within the area of closed-loop systems in greenhouses. This meta-research provides a clearer definition of the term closed-loop system within the context of greenhouses, as the term was previously vaguely defined. Using the meta-research approach, we identify six major existing research topic areas in closed-loop agriculture systems, which include models and controls, food waste, nutrient systems, growing media, heating and energy. Furthermore, we identify four areas that require further urgent work, which include the establishment of better connection between academic research to industry applications, clearer criteria surrounding growing media selection, critical operational requirements of a closed-loop system, and the functionality and synergy between the many modules that comprise a closed-loop greenhouse system.
The growing global population and climate change threaten the availability of many critical resources, and have been directly impacting the food and agriculture sector. Therefore, new cultivation technologies must be rapidly developed and implemented to secure the world's future food needs. Closed-loop greenhouse agriculture systems provide an opportunity to decrease resource reliance and increase crop yield. Greenhouses provide versatility in what can be grown and the resources required to function. Greenhouses can become highly efficient and resilient through the application of a closed-loop systems approach that prioritizes repurposing, reusing, and recirculating resources. Here, we employ a text mining approach to research the available research (meta-research) and publications within the area of closed-loop systems in greenhouses. This meta-research provides a clearer definition of the term “closed-loop system” within the context of greenhouses, as the term was previously vaguely defined. Using this meta-research approach, we identify six major existing research topic areas in closed-loop agriculture systems, which include: models and controls; food waste; nutrient systems; growing media; heating; and energy. Furthermore, we identify four areas that require further urgent work, which include the establishment of better connection between academic research to industry applications; clearer criteria surrounding growing media selection; critical operational requirements of a closed-loop system; and the functionality and synergy between the many modules that comprise a closed-loop greenhouse systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.