Quercetin has been reported to act as a senolytic by selectively removing senescent endothelial cells, and thus it would seem quercetin could revolutionize the field of gerontology. However, given quercetin's narrow therapeutic index reported in work done with human umbilical vein endothelial cells (HUVECs), we hypothesized that quercetin is not innocuous for non-senescent adult human vascular endothelial cells at concentrations that have been reported to be safe for proliferating HUVECs. Furthermore, we investigated quercetin 3-D-galactoside (Q3G; hyperoside), an inactive quercetin derivative that needs to be cleaved by beta-galactosidase overexpressed in senescent cells to release quercetin, as a potential safer senolytic. We compared the effectiveness of quercetin and Q3G in primary human coronary artery endothelial cells (HCAEC), which are adult microvascular cells. We found that quercetin caused cell death in non-senescent endothelial cells at a concentration that has been reported to selectively remove senescent cells, and that Q3G was not cytotoxic to either young or senescent cells. Thus, in primary adult human endothelial cells, quercetin and Q3G are not senolytics. Earlier work reporting positive results was done with HUVECs, and given their origin and the disparate findings from the current study, these may not be the best cells for evaluating potential senolytics in clinically relevant endothelial cells.New and noteworthyPreviously, quercetin has been reported to be a senolytic, a drug that selectively removes senescent cells, in HUVECs. However, we found neither quercetin nor Q3G was effective as a senolytic for adult human endothelial cells.
The heat shock response is an important cytoprotective mechanism for protein homeostasis and is an essential protective response to cellular stress and injury. Studies on changes in the heat shock response with aging have been mixed with regard to whether it is inhibited, and this, at least in part, reflects different tissues and different models. Cellular senescence is a key feature in aging, but work on the heat shock response in cultured senescent (SEN) cells has largely been limited to fibroblasts. Given the prevalence of oxidative injury in the aging cardiovascular system, we investigated whether SEN primary human coronary artery endothelial cells have a diminished heat shock response and impaired proteostasis. In addition, we tested whether this downregulation of heat shock response can be mitigated by 17β-estradiol (E2), which has a critical cardioprotective role in women, as we have previously reported that E2 improves the heat shock response in endothelial cells (Hamilton KL, Mbai FN, Gupta S, Knowlton AA. Arterioscler Thromb Vasc Biol 24: 1628–1633, 2004). We found that SEN endothelial cells, despite their unexpectedly increased proteasome activity, had a diminished heat shock response and had more protein aggregation than early passage cells. SEN cells had increased oxidative stress, which promoted protein aggregation. E2 treatment did not decrease protein aggregation or improve the heat shock response in either early passage or SEN cells. In summary, cellular senescence in adult human endothelial cells is accompanied by increased oxidative stress and a blunting of proteostasis, and E2 did not mitigate these changes. NEW & NOTEWORTHY Senescent human endothelial cells have a diminished heat shock response and increased protein aggregates. Senescent human endothelial cells have increased basal oxidative stress, which increases protein aggregates. Physiological level of 17β-estradiol did not improve proteostasis in endothelial cells. Listen to this article's corresponding podcast at https://ajpheart.podbean.com/e/proteostasis-in-senescent-endothelial-cells/ .
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.