A wide variety of application domains are concerned with data consisting of entities and their relationships or connections, formally represented as graphs. Within these diverse application areas, a common problem of interest is the detection of a subset of entities whose connectivity is anomalous with respect to the rest of the data. While the detection of such anomalous subgraphs has received a substantial amount of attention, no application-agnostic framework exists for analysis of signal detectability in graph-based data. In this paper, we describe a framework that enables such analysis using the principal eigenspace of a graph's residuals matrix, commonly called the modularity matrix in community detection. Leveraging this analytical tool, we show that the framework has a natural power metric in the spectral norm of the anomalous subgraph's adjacency matrix (signal power) and of the background graph's residuals matrix (noise power). We propose several algorithms based on spectral properties of the residuals matrix, with more computationally expensive techniques providing greater detection power. Detection and identification performance are presented for a number of signal and noise models, including clusters and bipartite foregrounds embedded into simple random backgrounds as well as graphs with community structure and realistic degree distributions. The trends observed verify intuition gleaned from other signal processing areas, such as greater detection power when the signal is embedded within a less active portion of the background. We demonstrate the utility of the proposed techniques in detecting small, highly anomalous subgraphs in real graphs derived from Internet traffic and product co-purchases.Comment: In submission to the IEEE, 16 pages, 8 figure
Graphs are high-dimensional, non-Euclidean data, whose utility spans a wide variety of disciplines. While their non-Euclidean nature complicates the application of traditional signal processing paradigms, it is desirable to seek an analogous detection framework. In this paper we present a matched filtering method for graph sequences, extending to a dynamic setting a previous method for the detection of anomalously dense subgraphs in a large background. In simulation, we show that this temporal integration technique enables the detection of weak subgraph anomalies than are not detectable in the static case. We also demonstrate background/foreground separation using a real background graph based on a computer network.
In many applications, it is convenient to represent data as a graph, and often these datasets will be quite large. This paper presents an architecture for analyzing massive graphs, with a focus on signal processing applications such as modeling, filtering, and signal detection. We describe the architecture, which covers the entire processing chain, from data storage to graph construction to graph analysis and subgraph detection. The data are stored in a new format that allows easy extraction of graphs representing any relationship existing in the data. The principal analysis algorithm is the partial eigendecomposition of the modularity matrix, whose running time is discussed. A large document dataset is analyzed, and we present subgraphs that stand out in the principal eigenspace of the timevarying graphs, including behavior we regard as clutter as well as small, tightly-connected clusters that emerge over time.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.