Effectively monitoring the spread of SARS-CoV-2 variants is essential to efforts to counter the ongoing pandemic. Wastewater monitoring of SARS-CoV-2 RNA has proven an effective and efficient technique to approximate COVID-19 case rates in the population. Predicting variant abundances from wastewater, however, is technically challenging. Here we show that by sequencing SARS-CoV-2 RNA in wastewater and applying computational techniques initially used for RNA-Seq quantification, we can estimate the abundance of variants in wastewater samples. We show by sequencing samples from wastewater and clinical isolates in Connecticut U.S.A. between January and April 2021 that the temporal dynamics of variant strains broadly correspond. We further show that this technique can be used with other wastewater sequencing techniques by expanding to samples taken across the United States in a similar timeframe. We find high variability in signal among individual samples, and limited ability to detect the presence of variants with clinical frequencies <10%; nevertheless, the overall trends match what we observed from sequencing clinical samples. Thus, while clinical sequencing remains a more sensitive technique for population surveillance, wastewater sequencing can be used to monitor trends in variant prevalence in situations where clinical sequencing is unavailable or impractical.
Effectively monitoring the spread of SARS-CoV-2 mutants is essential to efforts to counter the ongoing pandemic. Predicting lineage abundance from wastewater, however, is technically challenging. We show that by sequencing SARS-CoV-2 RNA in wastewater and applying algorithms initially used for transcriptome quantification, we can estimate lineage abundance in wastewater samples. We find high variability in signal among individual samples, but the overall trends match those observed from sequencing clinical samples. Thus, while clinical sequencing remains a more sensitive technique for population surveillance, wastewater sequencing can be used to monitor trends in mutant prevalence in situations where clinical sequencing is unavailable.
As of September 2022, more than 32 million people in Canada, including around 4.5 million in British Columbia, have received a vaccine to prevent SARS-CoV-2 infection. 1 With any novel vaccine, safety and effectiveness are important to public health and may determine the success of achieving the targeted immunization coverage. According to a recent systematic review, the overall rate of SARS-CoV-2 vaccination acceptance ranges from 53.6% to 84.4% in the United States. 2 One of the key reasons for vaccine hesitancy is the fear of adverse effects. 3,4 As large populations are vaccinated, certain uncommon events may be observed that were not detected during the premarketing clinical trials, whether or not these events are related to the vaccine. The same is the case with SARS-CoV-2 vaccination. The prelicensure study data did not suggest any risk of postvaccination myocarditis. However, postmarketing studies have suggested an association between mRNA SARS-CoV-2 vaccines (BNT162b2 [Pfizer-BioNTech] and mRNA-1273 [Moderna]) and myocarditis, among other adverse events after immunization, which has raised concern regarding the safety of mRNA vaccines, specifically among younger populations. [5][6][7] Most evidence comes from case reports and case series. Earlier data have suggested higher rates of myocarditis among young adults after the mRNA-1273 compared with the BNT162b2 vaccine. Limited data are available on the rate of myocarditis after the third dose, which is relevant as further boosters are planned. Given the important economic and health consequences of COVID-19, it is vital to further evaluate the likelihood of this signal.
Veterans residing in underserved rural areas face many barriers to accessing high-quality rehabilitation services. This article describes the benefits and challenges of using technology for delivery of rehabilitation services to rural Veterans using TeleHOME, an innovative tele-rehabilitation program. TeleHOME enables rehabilitation providers to remotely assess the Veteran's functional abilities and needs in his or her own home where these tasks must be performed. This technology increases the ability of all team members to contribute to interdisciplinary care, but also requires greater levels of team integration. One month after the completion of the TeleHOME project, we met with clinicians to discuss their perceptions of whether and how use of the technology affected interdisciplinary care processes, and what approaches were used to meet team-based goals. TeleHOME can improve access to rehabilitation services for rural Veterans, but will also bring about novel integrative care processes that may improve the effectiveness of such services. Recommendations to overcome challenges to optimize the implementation and delivery of TeleHOME services as well as to better inform clinicians working with rural Veterans are discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.