Uterine and umbilical uptakes of plasma amino acids were measured simultaneously in eighteen singleton pregnant ewes at 130 ± 1 days gestation for the purpose of establishing which amino acids are produced or used by the uteroplacenta under normal physiological conditions and at what rates. The branched-chain amino acids (BCAA) had uterine uptakes significantly greater than umbilical uptakes. Net uteroplacental BCAA utilization was 8.0 ± 2.5 μmol ⋅ kg fetus−1 ⋅ min−1( P < 0.005) and represented 42% of the total BCAA utilization by fetus plus uteroplacenta. There was placental uptake of fetal glutamate (4.2 ± 0.3 μmol ⋅ kg fetus−1 ⋅ min−1, P < 0.001) and no uterine uptake of maternal glutamate. Umbilical uptake of glutamine was ∼61% greater than uterine uptake, thus demonstrating net uteroplacental glutamine production of 2.2 ± 0.9 μmol ⋅ kg fetus−1 ⋅ min−1( P < 0.021). In conjunction with other evidence, these data indicate rapid placental metabolism of glutamate, which is in part supplied by the fetus and in part produced locally via BCAA transamination. Most of the glutamate is oxidized, and some is used to synthesize glutamine, which is delivered to the fetus. There was net uteroplacental utilization of maternal serine and umbilical uptake of glycine produced by the placenta. Maternal serine utilization and glycine umbilical uptake were virtually equal (3.14 ± 0.50 vs. 3.10 ± 0.46 μmol ⋅ kg fetus−1 ⋅ min−1). This evidence supports the conclusion that the ovine placenta converts large quantities of maternal serine into fetal glycine.
The kinetics of Ca2+ dissociation from fura-and indo-l were measured using a stopped-flow spectrofluorimeter. The dissociation rate constants were 84 s-t and 130 s-t, respectively, in 0.1 M KC1 at 20°C. The rate constants were insensitive to pH over the range 7.0 to 8.0. The second order association rate constants were estimated indirectly to be in the region of 5 x lo8 M-'.s-' and thus approach the diffusion-controlled limit. The results demonstrate that these new generation indicators are well-suited to measure rapid changes in concentration of intracellular Ca*+.
Tyrosine and cyst(e)ine are amino acids that are thought to be essential for preterm neonates. These amino acids have low stability (cyst(e)ine) or low solubility (tyrosine) and are therefore usually present only in small amounts in amino acid solutions. Acetylation improves the stability and solubility of amino acids, facilitating a higher concentration in the solution. We compared three commercially available amino acid solutions, Aminovenös-N-päd 10%, Vaminolact 6.5%, and Primène 10%, administered to 20 low-birth-weight neonates on total parenteral nutrition from postnatal day 2 onward. Aminovenös-N-päd 10% contains acetylated tyrosine and acetylated cysteine; the other solutions do not contain acetylated amino acids and differ in the amount of tyrosine and cysteine added. On postnatal day 7, plasma amino acids were measured together with urinary excretion of amino acids and the total nitrogen excretion; 38% of the intake of N-acetyl-L-tyrosine and 53% of the intake of N-acetyl-L-cysteine were excreted in urine. Plasma levels of N-acetyl-L-tyrosine (331 +/- 74 mumol/L) and N-acetyl-L-cysteine (18 +/- 29 mumol/L) were higher than those of tyrosine (105 +/- 108 mumol/L) and cystine (11 +/- 9 mumol/L), respectively. Plasma tyrosine levels in the groups receiving small amounts of tyrosine remained just below the reference range. We show a linear correlation of plasma cystine with the intake of cysteine (r = .75, p = 0.01), but not with N-acetyl-L-cysteine. The estimated intake of cysteine should be 500 mumol.kg-1.d-1 in order to obtain levels comparable with those shown in normal term, breast-fed neonates. Nitrogen retention did not differ among the three groups (247 to 273 mg.kg-1.d-1).(ABSTRACT TRUNCATED AT 250 WORDS)
Two questions bearing on the use of fura-to measure transient changes in intracellular CaZ+ concentration have been addressed. To investigate fura-intracellular binding, the amounts of fura-and [14c]glycine in Balanus nub&s myofibrillar bundles after loading were determined and their intracellular apparent diffusion constants measured. No significant fura-immobilisation occurs under the conditions used. The apparent diffusion constant for fura-in aqueous solution was determined. The relationship between half-time for relaxation of force and fura-fluorescence transients, and intracellular fura-concentration, in voltageclamped single muscle fibres was examined. Significant buffering of the Ca 2+ transient occurred at furaconcentrations above N 6 PM. (Striated muscle)
FuraDiffusion
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.