Human 12-lipoxygenase (12-LOX) is an enzyme involved in platelet activation and is a promising target for antiplatelet therapies. Despite the clinical importance of 12-LOX, the exact mechanisms of how it affects platelet activation are unclear, and the lack of structural information has limited drug discovery efforts. In this study, we used single-particle cryo-electron microscopy to determine the high-resolution structures (1.7 Å- 2.8 Å) of human 12-LOX for the first time. Our results showed that 12-LOX can exist in multiple oligomeric states, from monomer to hexamer, which may impact its catalytic activity and membrane association. We also identified different conformations within a 12-LOX dimer, likely representing different time points in its catalytic cycle. Furthermore, we were able to identify small molecules bound to the 12-LOX structures. The active site of the 12-LOX tetramer is occupied by an endogenous 12-LOX inhibitor, a long-chain acyl-Coenzyme A. Additionally, we found that the 12-LOX hexamer can simultaneously bind to arachidonic acid and ML355, a selective 12-LOX inhibitor that has passed a phase I clinical trial for treating heparin-induced thrombocytopenia and has received fast-track designation by the FDA. Overall, our findings provide novel insights into the assembly of 12-LOX oligomers, its catalytic mechanism, and small molecule binding, paving the way for further drug development targeting the 12-LOX enzyme.
Human 12-lipoxygenase (12-LOX) is a key enzyme involved in platelet activation and regulation of its activity has been targeted for treatment of heparin-induced thrombocytopenia. Despite the clinical importance of 12-LOX, the exact mechanisms of how it affects platelet activation are not fully understood, and the lack of structural information has limited drug discovery efforts. In this study, we used single-particle cryo-electron microscopy to determine the high-resolution structures (1.7 Å - 2.8 Å) of human 12-LOX for the first time. Our results showed that 12-LOX can exist in multiple oligomeric states, from monomer to hexamer, which may impact its catalytic activity and membrane association. We also identified different conformations within a 12-LOX dimer, likely representing different time points in its catalytic cycle. Furthermore, we were able to identify small molecules bound to the 12-LOX structures. The active site of the 12-LOX tetramer is occupied by an endogenous 12-LOX inhibitor, a long-chain acyl-Coenzyme A. Additionally, we found that the 12-LOX hexamer can simultaneously bind to arachidonic acid and ML355, a selective 12-LOX inhibitor that has passed a phase I clinical trial for treating heparin-induced thrombocytopenia and has received fast-track designation by the FDA. Overall, our findings provide novel insights into the assembly of 12-LOX oligomers, its catalytic mechanism, and small molecule binding, paving the way for further drug development targeting the 12-LOX enzyme.
Lipid metabolism is a complex process crucial for energy production resulting in high levels of acyl-coenzyme A (acyl-CoA) molecules in the cell. Acyl-CoAs have also been implicated in inflammation, which could be possibly linked to lipoxygenase (LOX) biochemistry by the observation that an acyl-CoA was bound to human platelet 12-lipoxygenase via cryo-EM. Given that LOX isozymes play a pivotal role in inflammation, a more thorough investigation of the inhibitory effects of acyl-CoAs on lipoxygenase isozymes was judged to be warranted. Subsequently, it was determined that C18 acyl-CoA derivatives were the most potent against h12-LOX, human reticulocyte 15-LOX-1 (h15-LOX-1), and human endothelial 15-LOX-2 (h15-LOX-2), while C16 acyl-CoAs were more potent against human 5-LOX. Specifically, oleoyl-CoA (18:1) was most potent against h12-LOX (IC50 = 32 μM) and h15-LOX-2 (IC50 = 0.62 μM), stearoyl-CoA against h15-LOX-1 (IC50 = 4.2 μM), and palmitoleoyl-CoA against h5-LOX (IC50 = 2.0 μM). The inhibition of h15-LOX-2 by oleoyl-CoA was further determined to be allosteric inhibition with a Ki of 82 +/− 70 nM, an α of 3.2 +/− 1, a β of 0.30 +/− 0.07, and a β/α = 0.09. Interestingly, linoleoyl-CoA (18:2) was a weak inhibitor against h5-LOX, h12-LOX, and h15-LOX-1 but a rapid substrate for h15-LOX-1, with comparable kinetic rates to free linoleic acid (kcat = 7.5 +/− 0.4 s−1, kcat/KM = 0.62 +/− 0.1 µM−1s−1). Additionally, it was determined that methylated fatty acids were not substrates but rather weak inhibitors. These findings imply a greater role for acyl-CoAs in the regulation of LOX activity in the cell, either through inhibition of novel oxylipin species or as a novel source of oxylipin-CoAs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.