SUMMARY Deregulated Myc transcriptionally reprograms cell metabolism to promote neoplasia. Here we show that oncogenic Myc requires the Myc superfamily member MondoA, a nutrient-sensing transcription factor, for tumorigenesis. Knockdown of MondoA, or its dimerization partner Mlx, blocks Myc-induced reprogramming of multiple metabolic pathways resulting in apoptosis. Identification, and knockdown, of genes co-regulated by Myc and MondoA has allowed us to define metabolic functions required by deregulated Myc and demonstrate a critical role for lipid biosynthesis in survival of Myc-driven cancer. Furthermore, overexpression of a subset of Myc and MondoA co-regulated genes correlates with poor outcome of patients with diverse cancers. Co-regulation of cancer metabolism by Myc and MondoA provides the potential for therapeutics aimed at inhibiting MondoA and its target genes.
The emergence of antibody-drug conjugates (ADC), such as brentuximab vedotin and ado-trastuzumab emtansine, has led to increased efforts to identify new payloads and develop improved drug-linker technologies. Most antibody payloads impart significant hydrophobicity to the ADC, resulting in accelerated plasma clearance and suboptimal in vivo activity, particularly for conjugates with high drug-to-antibody ratios (DAR). We recently reported on the incorporation of a discrete PEG 24 polymer as a side chain in a b-glucuronidase-cleavable monomethylauristatin E (MMAE) linker to provide homogeneous DAR 8 conjugates with decreased plasma clearance and increased antitumor activity in xenograft models relative to a non-PEGylated control. In this work, we optimized the drug-linker by minimizing the size of the PEG side chain and incorporating a self-stabilizing maleimide to prevent payload de-conjugation in vivo. Multiple PEG-glucuronide-MMAE linkers were prepared with PEG size up to 24 ethylene oxide units, and homogeneous DAR 8 ADCs were evaluated. A clear relationship was observed between PEG length and conjugate pharmacology when tested in vivo. Longer PEG chains resulted in slower clearance, with a threshold length of PEG 8 beyond which clearance was not impacted. Conjugates bearing PEG of sufficient length to minimize plasma clearance provided a wider therapeutic window relative to faster clearing conjugates bearing shorter PEGs. A lead PEGylated glucuronide-MMAE linker was identified incorporating a self-stabilizing maleimide and a PEG 12 side chain emerged from these efforts, enabling highly potent, homogeneous DAR 8 conjugates and is under consideration for future ADC programs.
The histone variant H2A.Z has been implicated in the regulation of gene expression, and in plants antagonizes DNA methylation. Here, we ask whether a similar relationship exists in mammals, using a mouse B-cell lymphoma model, where chromatin states can be monitored during tumorigenesis. Using native chromatin immunoprecipitation with microarray hybridization (ChIP-chip), we found a progressive depletion of H2A.Z around transcriptional start sites (TSSs) during MYC-induced transformation of pre-B cells and, subsequently, during lymphomagenesis. In addition, we found that H2A.Z and DNA methylation are generally anticorrelated around TSSs in both wild-type and MYC-transformed cells, as expected for the opposite effects of these chromatin features on promoter competence. Depletion of H2A.Z over TSSs both in cells that are induced to proliferate and in cells that are developing into a tumor suggests that progressive loss of H2A.Z during tumorigenesis results from the advancing disease state. These changes were accompanied by increases in chromatin salt solubility. Surprisingly,~30% of all genes showed a redistribution of H2A.Z from around TSSs to bodies of active genes during the transition from MYC-transformed to tumor cells, with DNA methylation lost from gene bodies where H2A.Z levels increased. No such redistributions were observed during MYC-induced transformation of wild-type pre-B cells. The documented role of H2A.Z in regulating transcription suggests that 30% of genes have the potential to be aberrantly expressed during tumorigenesis. Our results imply that antagonism between H2A.Z deposition and DNA methylation is a conserved feature of eukaryotic genes, and that transcription-coupled H2A.Z changes may play a role in cancer initiation and progression.
Previous studies have found that treatment with lithium over a 4-week period may increase the concentration of N-acetyl-aspartate (NAA) in both bipolar patients and controls. In view of other findings indicating that NAA concentrations may be a good marker for neuronal viability and/or functioning, it has been further suggested that some of the long term benefits of lithium may therefore be due to actions to improve these neuronal properties. The aim of the present study was to utilize H magnetic resonance spectroscopy ( H MRS) to further examine the effects of both lithium and sodium valproate upon NAA concentrations in treated euthymic bipolar patients. In the first part of the study, healthy controls (n =18) were compared with euthymic bipolar patients (type I and type II) who were taking either lithium (n =14) or sodium valproate (n =11), and NAA : creatine ratios were determined. In the second part, we examined a separate group of euthymic bipolar disorder patients taking sodium valproate (n =9) and compared these to age- and sex-matched healthy controls (n =11), and we quantified the exact concentrations of NAA using an external solution. The results from the first part of the study showed that bipolar patients chronically treated with lithium had a significant increase in NAA concentrations but, in contrast, there were no significant increases in the sodium valproate-treated patients compared to controls. The second part of the study also found no effects of sodium valproate on NAA concentrations. These findings are the first to compare NAA concentrations in euthymic bipolar patients being treated with lithium or sodium valproate. The results support suggestions that longer-term administration of lithium to bipolar patients may increase NAA concentrations. However, the study suggests that chronic administration of sodium valproate to patients does not lead to similar changes in NAA concentrations. These findings suggest that sodium valproate and lithium may not share a common mechanism of action in bipolar disorder involving neurotrophic or neuroprotective effects.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.