Metastatic growth is considered a rate-limiting step in cancer progression, and upregulation of extracellular matrix (ECM) deposition and cell–ECM signaling are major drivers of this process. Mechanisms to reverse ECM upregulation in cancer could potentially facilitate its prevention and treatment but they are poorly understood. We previously reported that the adhesion G-protein-coupled receptor GPR56/ADGRG1 is downregulated in melanoma metastases. Its re-expression inhibited melanoma growth and metastasis and reduced the deposition of fibronectin, a major ECM component. We hypothesize that its effect on fibronectin deposition contributes to its inhibitory role on metastatic growth. To test this, we investigated the function of GPR56 on cell–fibronectin adhesion and its relationship with metastatic growth in melanoma. Our results reveal that GPR56 inhibits melanoma metastatic growth by impeding the expansion of micrometastases to macrometastases. Meanwhile, we present evidence that GPR56 inhibits fibronectin deposition and its downstream signaling, such as phosphorylation of focal adhesion kinase (FAK), during this process. Administration of the FAK inhibitor Y15 perturbed the proliferation of melanoma metastases, supporting a causative link between the cell adhesion defect induced by GPR56 and its inhibition of metastatic growth. Taken together, our results suggest that GPR56 in melanoma metastases inhibits ECM accumulation and adhesion, which contributes to its negative effects on metastatic growth.
Acute lung injury/acute respiratory distress syndrome (ALI/ARDS) is a devastating disease that can be caused by a variety of conditions including pneumonia, sepsis, trauma, and most recently, COVID-19. Although our understanding of the mechanisms of ALI/ARDS pathogenesis and resolution has considerably increased in recent years, the mortality rate remains unacceptably high (~40%), primarily due to the lack of effective therapies for ALI/ARDS. Dysregulated inflammation, as characterized by massive infiltration of polymorphonuclear leukocytes (PMNs) into the airspace and the associated damage of the capillary-alveolar barrier leading to pulmonary edema and hypoxemia, is a major hallmark of ALI/ARDS. Endothelial cells (ECs), the inner lining of blood vessels, are important cellular orchestrators of PMN infiltration in the lung. Nuclear factor-kappa B (NF-κB) plays an essential role in rendering the endothelium permissive for PMN adhesion and transmigration to reach the inflammatory site. Thus, targeting NF-κB in the endothelium provides an attractive approach to mitigate PMN-mediated vascular injury, not only in ALI/ARDS, but in other inflammatory diseases as well in which EC dysfunction is a major pathogenic mechanism. This review discusses the role and regulation of NF-κB in the context of EC inflammation and evaluates the potential and problems of targeting it as a therapy for ALI/ARDS.
Endothelial cell (EC) inflammation and permeability are critical pathogenic mechanisms in many inflammatory conditions including acute lung injury. In this study, we investigated the role of ATG7, an essential autophagy regulator with no autophagy-unrelated functions, in the mechanism of EC inflammation and permeability. Knockdown of ATG7 using si-RNA significantly attenuated thrombin-induced expression of proinflammatory molecules such as IL-6, MCP-1, ICAM-1 and VCAM-1. Mechanistic study implicated reduced NF-κB activity in the inhibition of EC inflammation in ATG7silenced cells. Moreover, depletion of ATG7 markedly reduced the binding of RelA/p65 to DNA in the nucleus. Surprisingly, the thrombin-induced degradation of IκBα in the cytosol was not affected in ATG7-depleted cells, suggesting a defect in the translocation of released RelA/p65 to the nucleus in these cells. This is likely due to suppression of thrombin-induced phosphorylation and thereby inactivation of Cofilin1, an actin-depolymerizing protein, in ATG7-depleted cells. Actin stress fiber dynamics are required for thrombin-induced translocation of RelA/p65 to the nucleus, and indeed our results showed that ATG7 silencing inhibited this response via inactivation of Cofilin1. ATG7 silencing also reduced thrombin-mediated EC permeability by inhibiting the disassembly of VE-cadherin at adherens junctions. Together, these data uncover a novel function of ATG7 in mediating EC inflammation and permeability, and provide a mechanistic basis for the linkage between autophagy and EC dysfunction. Endothelial cell (EC) inflammation and permeability represent two major pathogenic features of many inflammatory conditions including acute lung injury (ALI) 1-3. ECs form the lining of the blood vessels of many organs such as the lung, heart, brain, kidney, and liver etc. Thus, ECs play an important role as a gate-keeper, preserving vascular integrity and providing a natural barrier to circulating blood, together maintaining homeostasis 4,5. Previous studies on EC inflammation and barrier function have shown that vascular EC exposed to bacterial, chemical, and mechanical insults secrete inflammatory and chemotactic molecules, and demonstrate loss of barrier integrity 6. Among the major causes for the exhibition of such inflammation and barrier disruption include activation of the transcription factor NF-κB and disassembly of adherens junctions (AJs) 7,8. NF-κB is a ubiquitously expressed family of transcription factors which play important roles in various processes including inflammation, cell proliferation, differentiation, and survival 9,10. The NF-κB family is comprised of five members: Rel (c-Rel), Rel A (p65), Rel B, NF-κB1 (p105/p50), and NF-κB2 (p100/p52) 11,12. In inactive conditions NF-κB remains in the cytoplasm while bound to its inhibitory protein IκBα 9. During an inflammatory response, IκBα undergoes phosphorylation at Ser32 and Ser36 leading to its proteasome-mediated degradation and subsequent release of NF-κB (predominantly RelA/p65 homodimer in EC) 1...
ABO immune complexes (ABO-IC) formed by ABO-incompatible antigen-antibody interaction are associated with hemolysis and platelet destruction in patients transfused with ABO-nonidentical blood products. However, the effects of ABO-IC on endothelial cells (EC) are unclear. ABO-IC were formed in vitro from normal donor-derived plasma and serum. Human pulmonary artery EC (HPAEC) were cultured and treated with media, ABO-identical and –non-identical plasma, and ABO-IC. EC barrier integrity was evaluated using transendothelial electrical resistance (TEER), scanning electron microscopy (SEM), vascular endothelial (VE)-cadherin and phalloidin staining, and Rho-associated Kinase (ROCK) inhibitor treatment. TEER revealed significant/irreversible barrier disruption within 1–2 h of exposure to ABO non-identical plasma and ABO-IC; this occurred independently of EC ABO type. Treatment with ABO-IC resulted in decreased VE-cadherin staining and increased phalloidin staining in a time-dependent manner, suggesting that the resultant increased EC barrier permeability is secondary to actin stress fiber formation and loss of cell surface VE-cadherin. Inhibition of ROCK was effective in protecting against IC-induced barrier disruption even two hours after ABO-IC exposure. ABO-IC causes increased EC barrier permeability by decreasing cell surface VE-cadherin and promoting stress fiber formation, which is preventable by inhibiting ROCK activation to protect against EC contraction and gap formation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.