This article aims to apply a mathematical model to investigate the spread of malaria by considering vector bias, saturated treatment, and an optimal control approach. A mathematical analysis of the equilibrium points and an investigation of the basic reproduction number show that if the basic reproduction number ( is less than one, the disease-free equilibrium is locally asymptotically stable. Furthermore, the center-manifold theory is applied to analyze the stability of the endemic equilibrium when 1 . We find that our model performs a backward bifurcation phenomenon when the saturated treatment or vector bias parameter is larger than the threshold. Interestingly, we found that uncontrolled fumigation could increase the chance of the appearance of backward bifurcation. From the sensitivity analysis of , we find that the fumigation and vector bias are the most influential parameters for determining the magnitude of . Using the Pontryagin maximum principle, the optimal control problem is constructed by treating fumigation and medical treatment parameters as the time-dependent variable. Our numerical results on the optimal control simulation suggest that time-dependent fumigation and medical treatment could suppress the spread of malaria more efficiently at minimum cost.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.