Polyurethane (PU) substrates are biocompatible materials widely used to manufacture endotracheal tubes. However, in common with other biomedical materials, they are liable to the formation of microbial films. The occurrence of pneumonia in intubated patients treated at intensive care units (ICUs) often takes the form of ventilator-associated pneumonia (VAP). The issue relates to the translocation of pathogenic microorganisms that colonize the oropharyngeal mucosa, dental plaque, stomach, and sinuses. New protective materials can provide a more effective therapeutic approach to mitigating bacterial films. This work concerns microcrystalline carbon film containing dispersed silver nanoparticles (μC-Ag) deposited on PU substrates using a physical vapor deposition (PVD) sputtering process. For the first time, carbon paper was used to produce a carbon target with holes exposing a silver disk positioned under the carbon paper, forming a single target for use in the sputtering system. The silver nanoparticles were well distributed in the carbon film. The adherence characteristics of the μC-Ag film were evaluated using a tape test technique, and EDX mapping was performed to analyze the residual particles after the tape test. The microbicidal effect of the thin film was also investigated using species S. aureus, a pathogenic microorganism responsible for most infections of the lower respiratory tract involving ventilator-associated pneumonia (VAP) and ventilator-associated tracheobronchitis (VAT). The results demonstrated that μC-Ag films on PU substrates are promising materials for mitigating pathogenic microorganisms on endotracheal tubes.
Bacterial contamination in hospital environments is a significant concern for patient admissions. Aiming to reduce contamination, titanium dioxide film (TiO2) in the anatase phase has been prepared on the surface of polyvinyl chloride (PVC) tubes. The PVC tube material was
used to study the film’s effectiveness in inhibiting bacterial growth and cell viability. The morphology and composition of deposited films were investigated using a Scanning Electron Microscope (SEM) and Energy Dispersive Spectroscopy (EDS) map. In addition, Fourier-Transform Infrared
Spectroscopy (FTIR) and XRD diffractogram were used to analyze film composition and phase, respectively. The adhesion of TiO2 film on PVC substrate was determined using Scotch™ tape-test according to ASTM: D3359-09, 2010, and the film surface morphology was analyzed by the
MEV-FEG technique and EDS map. The bacterial viability was performed with Staphylococcus aureus, and cell viability was performed using L929 strain mouse fibroblasts. The results of TiO2 in the anatase phase deposited by ALD on the PVC surface demonstrate good adherence and
the film’s effectiveness in inhibiting bacterial growth and cell viability.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.