To each his own: An addressable electrochemical device consisting of orthogonally arranged rows and columns of electrodes has been constructed to monitor protein expression in genetically engineered cells at the single-cell level. The response based on redox cycling reflected the different expression levels of the enzyme from individual HeLa cells transfected with a plasmid vector including secreted alkaline phosphatase.
An electrochemical platform for parallel monitoring of secreted alkaline phosphatase (SEAP) has been microfabricated on a device with a mammalian-cell array chip. A 4 × 4 ring-ring electrode array was designed at the rim of the round cellular pattern with a diameter of 270 μm. Electrochemical characterization was carried out, and it was found that the collection efficiency was about 50% in dual mode when the inner-ring and the outer-ring electrodes were selected as the collector and generator electrodes, respectively. The current amplification ratio for the dual mode normal to single mode was 2.84. SEAP expressing from the cells was parallelly monitored by using a multiplexer switching system at the 16 round cellular spots. The reduction current for HeLa cells transfected with plasmid encoding SEAP observed at the collector outer ring electrode was found to be significantly higher than that for wild-type HeLa. Finally, the top of the microwell with the round cellular pattern was covered with a poly(dimethylsiloxane) block for 5 min to accumulate the secreted enzyme and the product of the enzyme reaction so that further signal enhancement could be observed.
Zellen als Individualisten: Eine adressierbare elektrochemische Funktionseinheit mit Elektroden in orthogonalen Zeilen und Spalten wurde entworfen, um die Proteinexpression in einzelnen gentechnisch veränderten Zellen zu verfolgen. Aus dem Verhalten von HeLa‐Zellen, die mit einem Plasmidvektor für sekretierte alkalische Phosphatase transfiziert waren, beim Durchfahren von Redoxzyklen ging der unterschiedliche Expressionsgrad des Enzyms hervor.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.