We provide an overview of imaging, histopathology, genetics, and multidisciplinary treatment of giant cell tumor of bone (GCTB), an intermediate, locally aggressive but rarely metastasizing tumor. Overexpression of receptor activator of nuclear factor kB ligand (RANKL) by mononuclear neoplastic stromal cells promotes recruitment of numerous reactive multinucleated giant cells. Conventional radiographs show a typical eccentric lytic lesion, mostly located in the meta-epiphyseal area of long bones. GCTB may also arise in the axial skeleton and very occasionally in the small bones of hands and feet. Magnetic resonance imaging is necessary to evaluate the extent of GCTB within bone and surrounding soft tissues to plan a surgical approach. Curettage with local adjuvants is the preferred treatment. Recurrence rates after curettage with phenol and polymethylmethacrylate (PMMA; 8%-27%) or cryosurgery and PMMA (0%-20%) are comparable. Resection is indicated when joint salvage is not feasible (e.g., intraarticular fracture with soft tissue component). Denosumab (RANKL inhibitor) blocks and bisphosphonates inhibit GCTBderived osteoclast resorption. With bisphosphonates, stabilization of local and metastatic disease has been reported, although level of evidence was low. Denosumab has been studied to a larger extent and seems to be effective in facilitating intralesional surgery after therapy. Denosumab was recently registered for unresectable disease. Moderate-dose radiotherapy (40-55 Gy) is restricted to rare cases in which surgery would lead to unacceptable morbidity and RANKL inhibitors are contraindicated or unavailable. The Oncologist 2014;19:550-561 Implications for Practice: Giant cell tumor of bone (GCTB) is an intermediate, locally aggressive, primary bone tumor. Ideally, all patients should be treated with intralesional excision with local adjuvant treatment (e.g., phenol, liquid nitrogen, polymethylmethacrylate), achieving joint salvage and optimal functional outcome. In patients with high-risk GCTB or in rare cases of metastatic disease, systemic targeted therapy with the receptor activator of nuclear factor kB ligand inhibitor denosumab is highly effective and may create an operable situation. Moderate-dose radiotherapy is indicated only for rare cases of unresectable, residual or recurrent GCTB in which denosumab is contraindicated or unavailable for preoperative treatment and when surgery would lead to unacceptable morbidity.
We report high complication rates and considerable failure rates for the use of intercalary allografts; complications primarily occurred in the first years after surgery, but some occurred much later after surgery. To reduce the number of failures, we recommend reconsidering the use of allografts for reconstructions of defects that are ≥15 cm, especially in older patients, and applying bridging osteosynthesis with use of plate fixation.
BackgroundReconstruction of periacetabular defects after pelvic tumor resection ranks among the most challenging procedures in orthopaedic oncology, and reconstructive techniques are generally associated with dissatisfying mechanical and nonmechanical complication rates. In an attempt to reduce the risk of dislocation, aseptic loosening, and infection, we introduced the LUMiC® prosthesis (implantcast, Buxtehude, Germany) in 2008. The LUMiC® prosthesis is a modular device, built of a separate stem (hydroxyapatite-coated uncemented or cemented) and acetabular cup. The stem and cup are available in different sizes (the latter of which is also available with silver coating for infection prevention) and are equipped with sawteeth at the junction to allow for rotational adjustment of cup position after implantation of the stem. Whether this implant indeed is durable at short-term followup has not been evaluated.Questions/purposes(1) What proportion of patients experience mechanical complications and what are the associated risk factors of periacetabular reconstruction with the LUMiC® after pelvic tumor resection? (2) What proportion of patients experience nonmechanical complications and what are the associated risk factors of periacetabular reconstruction with the LUMiC® after pelvic tumor resection? (3) What is the cumulative incidence of implant failure at 2 and 5 years and what are the mechanisms of reconstruction failure? (4) What is the functional outcome as assessed by Musculoskeletal Tumor Society (MSTS) score at final followup?MethodsWe performed a retrospective chart review of every patient in whom a LUMiC® prosthesis was used to reconstruct a periacetabular defect after internal hemipelvectomy for a pelvic tumor from July 2008 to June 2014 in eight centers of orthopaedic oncology with a minimum followup of 24 months. Forty-seven patients (26 men [55%]) with a mean age of 50 years (range, 12–78 years) were included. At review, 32 patients (68%) were alive. The reverse Kaplan-Meier method was used to calculate median followup, which was equal to 3.9 years (95% confidence interval [CI], 3.4–4.3). During the period under study, our general indications for using this implant were reconstruction of periacetabular defects after pelvic tumor resections in which the medial ilium adjacent to the sacroiliac joint was preserved; alternative treatments included hip transposition and saddle or custom-made prostheses in some of the contributing centers; these were generally used when the medial ilium was involved in the tumorous process or if the LUMiC® was not yet available in the specific country at that time. Conventional chondrosarcoma was the predominant diagnosis (n = 22 [47%]); five patients (11%) had osseous metastases of a distant carcinoma and three (6%) had multiple myeloma. Uncemented fixation (n = 43 [91%]) was preferred. Dual-mobility cups (n = 24 [51%]) were mainly used in case of a higher presumed risk of dislocation in the early period of our study; later, dual-mobility cups became the standard for the majo...
The incidence of CS, and especially ACT/CS I, has increased over time, which could be driven by both an ageing population and increased diagnostic imaging. With the increased number of diagnosed ACT/CS I, the number of preventative curettages of this tumour has also increased. Despite the supposed preventative character of this treatment, the incidence of high-grade CS did not decrease.
Level III, therapeutic study. See Guidelines for Authors for a complete description of levels of evidence.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.